A new approach to the kinetic simulation of plasmas in complex geometries,
based on the Particle-in- Cell (PIC) simulation method, is explored. In the two
dimensional (2d) electrostatic version of our method, called the Arbitrary
Curvilinear Coordinate PIC (ACC-PIC) method, all essential PIC operations are
carried out in 2d on a uniform grid on the unit square logical domain, and
mapped to a nonuniform boundary-fitted grid on the physical domain. As the
resulting logical grid equations of motion are not separable, we have developed
an extension of the semi-implicit Modified Leapfrog (ML) integration technique
to preserve the symplectic nature of the logical grid particle mover. A
generalized, curvilinear coordinate formulation of Poisson's equations to solve
for the electrostatic fields on the uniform logical grid is also developed. By
our formulation, we compute the plasma charge density on the logical grid based
on the particles' positions on the logical domain. That is, the plasma
particles are weighted to the uniform logical grid and the self-consistent mean
electrostatic fields obtained from the solution of the logical grid Poisson
equation are interpolated to the particle positions on the logical grid. This
process eliminates the complexity associated with the weighting and
interpolation processes on the nonuniform physical grid and allows us to run
the PIC method on arbitrary boundary-fitted meshes.Comment: Submitted to Computational Science & Discovery December 201