5,726 research outputs found
A methodology for exploiting parallelism in the finite element process
A methodology is described for developing a parallel system using a top down approach taking into account the requirements of the user. Substructuring, a popular technique in structural analysis, is used to illustrate this approach
Design, development and use of the finite element machine
Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained
Bankruptcy—Exemptions: When an Interested Party Must Object, and Exempting Property with the Intention of Retaining Possession
Schwab v. Reilly, 130 S. Ct. 2652 (2010)In Schwab v. Reilly, the United States Supreme Court partially frustrated the primary purpose of bankruptcy by making it more difficult for the debtor to exempt property itself, rather than a liquidated interest in that property. The Supreme Court held that when a debtor lists the value of the property the debtor wishes to exempt as equal to the fair market value of the property as listed on the debtor’s schedules, the debtor has not effectively exempted the property itself, but rather only an interest in the property up to the value the debtor has listed on his or her schedule. The debtor must list the value of the exemptible property as “100% of FMV” or use similar language in order to put the trustee on notice the debtor intends to keep the property. Because this method is not standard practice, there will be several rather large problems in the interim until this practice becomes more well-known
A language comparison for scientific computing on MIMD architectures
Choleski's method for solving banded symmetric, positive definite systems is implemented on a multiprocessor computer using three FORTRAN based parallel programming languages, the Force, PISCES and Concurrent FORTRAN. The capabilities of the language for expressing parallelism and their user friendliness are discussed, including readability of the code, debugging assistance offered, and expressiveness of the languages. The performance of the different implementations is compared. It is argued that PISCES, using the Force for medium-grained parallelism, is the appropriate choice for programming Choleski's method on the multiprocessor computer, Flex/32
Practical Network Coding in Sensor Networks: Quo Vadis?
Abstract. Network coding is a novel concept for improving network ca-pacity. This additional capacity may be used to increase throughput or reliability. Also in wireless networks, network coding has been proposed as a method for improving communication. We present our experience from two studies of applying network coding in realistic wireless sen-sor networks scenarios. As we show, network coding is not as useful in practical deployments as earlier theoretical work suggested. We discuss limitations and future opportunities for network coding in sensor net-works. 1 Network Coding in Wireless Sensor Networks Network Coding was introduced by Ahlswede et al. [1], proving that it can in-crease multicast capacity. Since then, it has been investigated in several different networked scenarios which demand different traffic characteristics. Most previous research has focused on theoretical aspects of applying network coding to sensor networks. There are, however, also more practical examples of applying networ
The role of center vortices in Gribov's confinement scenario
The connection of Gribov's confinement scenario in Coulomb gauge with the
center vortex picture of confinement is investigated. For this purpose we
assume a vacuum wave functional which models the infrared properties of the
theory and in particular shows strict confinement, i.e. an area law of the
Wilson loop. We isolate the center vortex content of this wave functional by
standard lattice methods and investigate their contributions to various static
propagators of the Hamilton approach to Yang-Mills theory in Coulomb gauge. We
find that the infrared properties of these quantities, in particular the
infrared divergence of the ghost form factor, are dominated by center vortices.Comment: 18 pages, 5 figure
Terrestrial locomotion imposes high metabolic requirements on bats
The evolution of powered flight involved major morphological changes in Chiroptera. Nevertheless, all bats are also capable of crawling on the ground and some are even skilled sprinters. We asked if a highly derived morphology adapted for flapping flight imposes high metabolic requirements on bats when moving on the ground. We measured the metabolic rate during terrestrial locomotion in mastiff bats, Molossus currentium, a species that is both a fast-flying aerial-hawking bat and an agile crawler on the ground. Metabolic rates of bats averaged 8.0±4.0 ml CO2 min–1 during a 1-min period of sprinting at 1.3±0.6 km h–1. With rising average speed, mean metabolic rates increased, reaching peak values that were similar to those of flying conspecifics. Metabolic rates of M. currentium were higher than those of similar-sized rodents that sprinted at similar velocities under steady-state conditions. When M. currentium sprinted at peak velocities, its aerobic metabolic rate was 3–5 times higher than those of rodent species running continuously in steady-state conditions. Costs of transport (J kg–1 m–1) were more than 10 times higher for running than for flying bats. We conclude that at the same speed bats experience higher metabolic rates during short sprints than quadruped mammals during steady-state terrestrial locomotion, yet running bats achieve higher maximal mass-specific aerobic metabolic rates than non-volant mammals such as rodents
Rain increases the energy cost of bat flight
Similar to insects, birds and pterosaurs, bats have evolved powered flight.
But in contrast to other flying taxa, only bats are furry. Here, we asked
whether flight is impaired when bat pelage and wing membranes get wet. We
studied the metabolism of short flights in Carollia sowelli, a bat that is
exposed to heavy and frequent rainfall in neotropical rainforests. We expected
bats to encounter higher thermoregulatory costs, or to suffer from lowered
aerodynamic properties when pelage and wing membranes catch moisture.
Therefore, we predicted that wet bats face higher flight costs than dry ones.
We quantified the flight metabolism in three treatments: dry bats, wet bats
and no rain, wet bats and rain. Dry bats showed metabolic rates predicted by
allometry. However, flight metabolism increased twofold when bats were wet, or
when they were additionally exposed to rain. We conclude that bats may not
avoid rain only because of sensory constraints imposed by raindrops on
echolocation, but also because of energetic constraints
A simple stochastic model for the evolution of protein lengths
We analyse a simple discrete-time stochastic process for the theoretical
modeling of the evolution of protein lengths. At every step of the process a
new protein is produced as a modification of one of the proteins already
existing and its length is assumed to be random variable which depends only on
the length of the originating protein. Thus a Random Recursive Trees (RRT) is
produced over the natural integers. If (quasi) scale invariance is assumed, the
length distribution in a single history tends to a lognormal form with a
specific signature of the deviations from exact gaussianity. Comparison with
the very large SIMAP protein database shows good agreement.Comment: 12 pages, 4 figure
- …