5,925 research outputs found
Leukocyte telomere shortening in Huntington's disease
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG repeat. Though symptom onset commonly occurs at midlife and inversely correlates with the CAG repeat expansion, age at clinical onset and progression rate are variable. In the present study we investigated the relationship between leukocyte telomere length (LTL) and HD development. LTL was measured by real-time PCR in manifest HD patients (HD, n = 62), pre-manifest HD patients (pre-HD, n = 38), and age-matched controls (n = 76). Significant LTL differences were observed between the three groups (p < .0001), with LTL values in the order: HD < pre-HD < controls. The relationship between LTL and age was different in the three groups. An inverse relationship between mean LTL and CAG repeat number was found in the pre-HD (p = .03). The overall data seem to indicate that after age 30 years, LT begins to shorten markedly in pre-HD patients according to CAG number and increasing age, up to the values observed in HD. This very suggestive picture allowed us to hypothesize that in pre-manifest HD, LTL could be a measure of time to clinical HD onset. The possible use of LTL as a reliable biomarker to track HD development and progression was evaluated and discussed
Fracture Functions
We present a new approach to semi-inclusive hard processes in QCD by means of
, hybrids between structure and fragmentation
functions. We briefly motivate and describe it together with a list of possible
applications.Comment: 5 pages, Late
Radiation Problem in Transplanckian Scattering
We investigate hard radiation emission in small-angle transplanckian
scattering. We show how to reduce this problem to a quantum field theory
computation in a classical background (gravitational shock wave). In momentum
space, the formalism is similar to the flat-space light cone perturbation
theory, with shock wave crossing vertices added. In the impact parameter
representation, the radiating particle splits into a multi-particle virtual
state, whose wavefunction is then multiplied by individual eikonal factors. As
a phenomenological application, we study QCD radiation in transplanckian
collisions of TeV-scale gravity models. We derive the distribution of initial
state radiation gluons, and find a suppression at large transverse momenta with
respect to the standard QCD result. This is due to rescattering events, in
which the quark and the emitted gluon scatter coherently. Interestingly, the
suppression factor depends on the number of extra dimensions and provides a new
experimental handle to measure this number. We evaluate the leading-log
corrections to partonic cross-sections due to the initial state radiation, and
prove that they can be absorbed into the hadronic PDF. The factorization scale
should then be chosen in agreement with an earlier proposal of Emparan, Masip,
and Rattazzi. In the future, our methods can be applied to the gravitational
radiation in transplanckian scattering, where they can go beyond the existing
approaches limited to the soft radiation case.Comment: 41 pp, v2: minor changes and added refs, conforms with published
versio
The Problem on the Lattice
If the expression of the topological charge density operator, suggested by
fermions obeying the Ginsparg--Wilson relation, is employed, it is possible to
prove on the lattice the validity of the Witten--Veneziano formula for the
mass. Recent numerical results from simulations with overlap fermions
in 2 (abelian Schwinger model) and 4 (QCD) dimensions give values for the mass
of the lightest pseudo-scalar flavour-singlet state that agree with theoretical
expectations and/or experimental data.Comment: 3 pages, talk presented by G.C. Rossi at Lattice2001(theorydevelop
A Model for the Big Bounce
I motivate a proposal for modeling, at weak string coupling, the ``Big
Bounce" transition from a growing-curvature phase to standard (FRW) cosmology
in terms of a pressure-less dense gas of "string-holes" (SH), string states
lying on the correspondence curve between strings and black holes. During this
phase SH evolve in such a way that temperature and (string-frame) curvature
remain and (a cosmological version of) the holographic entropy bound
remains saturated. This reasoning also appears to imply a new interpretation of
the Hagedorn phase transition in string theory.Comment: 10 pages, 2 figure
Heating up the cold bounce
Self-dual string cosmological models provide an effective example of bouncing
solutions where a phase of accelerated contraction smoothly evolves into an
epoch of decelerated Friedmann--Robertson--Walker expansion dominated by the
dilaton. While the transition to the expanding regime occurs at sub-Planckian
curvature scales, the Universe emerging after the bounce is cold, with sharply
growing gauge coupling. However, since massless gauge bosons (as well as other
massless fields) are super-adiabatically amplified, the energy density of the
maximally amplified modes re-entering the horizon after the bounce can
efficiently heat the Universe. As a consequence the gauge coupling reaches a
constant value, which can still be perturbative.Comment: 28 pages, 13 figure
Trialogue on the number of fundamental constants
This paper consists of three separate articles on the number of fundamental
dimensionful constants in physics. We started our debate in summer 1992 on the
terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the
subject to find that our views still diverged and decided to explain our
current positions. LBO develops the traditional approach with three constants,
GV argues in favor of at most two (within superstring theory), while MJD
advocates zero.Comment: Version appearing in JHEP; 31 pages late
Effect of Color Screening on Heavy Quarkonia Regge Trajectories
Using an unquenched lattice potential to calculate the spectrum of the
bottomonium system, we demonstrate numerically that the effect of pair creation
is to produce termination of hadronic Regge trajectories, in contrast to the
Veneziano model and the vast majority of phenomenological generalizations.
Termination of Regge trajectories may have significant experimental
consequences.Comment: 8 pages, 3 figures, published version including a discussion of
coupling to open channel
Hyperelliptic continued fractions and generalized jacobians: Minicourse given by Umberto Zannier
These are notes from the minicourse given by Umberto Zannier (Scuola Normale Superiore di Pisa). The notes were worked out by Laura Capuano, Peter Jossen,1 Christina Karolus, and Francesco Veneziano. Most of the material of these lectures, except for the numerical examples which were added by us, is already available in [45], The authors wish to thank Umberto Zannier for the lively discussions in Alpbach, and Olaf Merkert for providing computations of the examples 3.17, 3.28, 3.29, 3.33, and 3.25
- …