302 research outputs found
First observational application of a connectivity--based helicity flux density
Measuring the magnetic helicity distribution in the solar corona can help in
understanding the trigger of solar eruptive events because magnetic helicity is
believed to play a key role in solar activity due to its conservation property.
A new method for computing the photospheric distribution of the helicity flux
was recently developed. This method takes into account the magnetic field
connectivity whereas previous methods were based on photospheric signatures
only. This novel method maps the true injection of magnetic helicity in active
regions. We applied this method for the first time to an observed active
region, NOAA 11158, which was the source of intense flaring activity. We used
high-resolution vector magnetograms from the SDO/HMI instrument to compute the
photospheric flux transport velocities and to perform a nonlinear force-free
magnetic field extrapolation. We determined and compared the magnetic helicity
flux distribution using a purely photospheric as well as a connectivity-based
method. While the new connectivity-based method confirms the mixed pattern of
the helicity flux in NOAA 11158, it also reveals a different, and more correct,
distribution of the helicity injection. This distribution can be important for
explaining the likelihood of an eruption from the active region. The
connectivity-based approach is a robust method for computing the magnetic
helicity flux, which can be used to study the link between magnetic helicity
and eruptivity of observed active regions.Comment: 4 pages, 3 figures; published online in A&A 555, L6 (2013
Flux cancellation and the evolution of the eruptive filament of 2011 June 7
We investigate whether flux cancellation is responsible for the formation of
a very massive filament resulting in the spectacular 2011 June 7 eruption. We
analyse and quantify the amount of flux cancellation that occurs in NOAA AR
11226 and its two neighbouring ARs (11227 & 11233) using line-of-sight
magnetograms from the Heliospheric Magnetic Imager. During a 3.6-day period
building up to the filament eruption, 1.7 x 10^21 Mx, 21% of AR 11226's maximum
magnetic flux, was cancelled along the polarity inversion line (PIL) where the
filament formed. If the flux cancellation continued at the same rate up until
the eruption then up to 2.8 x 10^21 Mx (34% of the AR flux) may have been built
into the magnetic configuration that contains the filament plasma. The large
flux cancellation rate is due to an unusual motion of the positive polarity
sunspot, which splits, with the largest section moving rapidly towards the PIL.
This motion compresses the negative polarity and leads to the formation of an
orphan penumbra where one end of the filament is rooted. Dense plasma threads
above the orphan penumbra build into the filament, extending its length, and
presumably injecting material into it. We conclude that the exceptionally
strong flux cancellation in AR 11226 played a significant role in the formation
of its unusually massive filament. In addition, the presence and coherent
evolution of bald patches in the vector magnetic field along the PIL suggests
that the magnetic field configuration supporting the filament material is that
of a flux rope.Comment: 18 pages, 7 figures. Submitted to ApJ in December 2015, accepted in
June 201
The 2013 February 17 sunquake in the context of the active region's magnetic field configuration
© 2017. The American Astronomical Society. All rights reserved. Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region's magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope's instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake
Reconciling long-term cultural diversity and short-term collective social behavior
An outstanding open problem is whether collective social phenomena occurring
over short timescales can systematically reduce cultural heterogeneity in the
long run, and whether offline and online human interactions contribute
differently to the process. Theoretical models suggest that short-term
collective behavior and long-term cultural diversity are mutually excluding,
since they require very different levels of social influence. The latter
jointly depends on two factors: the topology of the underlying social network
and the overlap between individuals in multidimensional cultural space.
However, while the empirical properties of social networks are well understood,
little is known about the large-scale organization of real societies in
cultural space, so that random input specifications are necessarily used in
models. Here we use a large dataset to perform a high-dimensional analysis of
the scientific beliefs of thousands of Europeans. We find that inter-opinion
correlations determine a nontrivial ultrametric hierarchy of individuals in
cultural space, a result unaccessible to one-dimensional analyses and in
striking contrast with random assumptions. When empirical data are used as
inputs in models, we find that ultrametricity has strong and counterintuitive
effects, especially in the extreme case of long-range online-like interactions
bypassing social ties. On short time-scales, it strongly facilitates a
symmetry-breaking phase transition triggering coordinated social behavior. On
long time-scales, it severely suppresses cultural convergence by restricting it
within disjoint groups. We therefore find that, remarkably, the empirical
distribution of individuals in cultural space appears to optimize the
coexistence of short-term collective behavior and long-term cultural diversity,
which can be realized simultaneously for the same moderate level of mutual
influence
On-disc observations of flux rope formation prior to its eruption
Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extreme-ultraviolet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tether-cutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME
Reduced motor planning underlying inhibition of prepotent responses in children with ADHD
To flexibly regulate their behavior, children’s ability to inhibit prepotent responses arises from cognitive and motor mechanisms that have an intertwined developmental trajectory. Subtle differences in planning and control can contribute to impulsive behaviors, which are common in Attention Deficit and Hyperactivity Disorder (ADHD) and difficult to be assessed and trained. We adapted a Go/No-Go task and employed a portable, low-cost kinematic sensor to explore the different strategies used by children with ADHD or typical development to provide a prepotent response (dominant condition) or inhibit the prepotent and select an alternative one (non-dominant condition). Although no group difference emerged on accuracy levels, the kinematic analysis of correct responses revealed that, unlike neurotypical children, those with ADHD did not show increased motor planning in non-dominant compared to dominant trials. Future studies should investigate whether motor control could help children with ADHD compensate for planning difficulties. This strategy might make inhibition harder in naturalistic situations that involve complex actions. Combining cognitive and kinematic measures is a potential innovative method for assessment and intervention of subtle differences in executive processes such as inhibition, going deeper than is possible based on accuracy outcomes alone
Additivity of relative magnetic helicity in finite volumes
CONTEXT: Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, in other words that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. AIMS: Progress in understanding the nonadditivity of relative magnetic helicity requires removal of restrictive assumptions in favor of a general formalism that can be used in both theoretical investigations and numerical applications. METHODS: We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. RESULTS: We prove the nonadditivity of relative magnetic helicity in finite volumes in the most general, gauge-invariant formalism, and verify this numerically. We adopt more restrictive assumptions to derive known specific approximations, which yields a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the nonadditivity term in the partition equation is, in general, non-negligible. CONCLUSIONS: The nonadditivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint on the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of nonadditivity on global helicity budgets of complex physical processes
Evaluation of the natural risk perception, awareness, and preparedness at school by means of ad hoc questionnaires
One of the Sendai Framework 2015-2030 targets is to reduce the disruption of basic services, like educational facilities. Disaster education is actually considered to be an important factor to promote disaster risk reduction. The school resilience is not related to a specific hazard and vulnerability, but it takes into account many factors, including the people’s natural risk perception and awareness, along with their knowledge and capability of how to behave in an emergency. The scientific literature provides various notions of risk, risk perception, risk awareness, and risk preparedness. The literature on children’s natural risk perception is scarce and very recent compared with that about adults. Indeed, children’s perceptions about nature and environment are truly different from those of adults. The available research mainly concerns the implementation of earthquake emergency measures, while not much is available on flood-risk perception and even less on landslides. The relationship between risk perception, awareness, and preparedness is widely studied, but once again, there is no unambiguous or unique result that depends on the approach and the context.
We decided to refine the questionnaire that contributes to assess the school-resilience employed in the Geo-hazard Safety Classification method (GSC). We designed 7 different questionnaires, one for the adult personnel and six for the students, taking into account the peculiarity of each age. These questionnaires were thought through and designed to investigate three main awareness fundamentals: i) knowledge of the correct behaviours and procedure during a natural emergency that occurs at school; ii) perception of the natural risk of the area where the school is located; and iii) general knowledge of the correct behaviours during a natural emergency at school.
Three different analyses were carried out on the 5899 filled in questionnaires (820 by personnel and 5079 by students of each school stage) distributed in 27 schools of Tuscany Region (Central Italy): a) school by school; b) questionnaire typology (i.e., different school age); and c) topics (awareness fundamentals i, ii, and iii) and questionnaire typology (i.e., different school age). The results are coherent and show that a) young children’s knowledge is perfectly adequate to their age, b) as the age and responsibilities increase, the awareness and preparation do not increase proportionally, and c) the competences of the school personnel are not sufficient, probably caused by critical issues emerged (i.e., it is not clear where family reunification must take place) and because the wrong hazard perception leads to underestimating the importance of prevention actions and disaster education and. This last outcome turns out to be unexpected.
These questionnaires are a suitable, quick, easy and low-cost tool, even if considered separately from the GSC method. The school head-masters or the local and national educational offices actually could use them a) to evaluate the geo-hydrological and seismic risk knowledge and awareness of students, professors and school personnel; b) to project and design actions needed to improve the school-resilience; c) to verify the goodness of the activities developed at point b); and d) as an educational tool to improve the disaster education
Magnetic Helicity Evolution and Eruptive Activity in NOAA Active Region 11158
Coronal mass ejections are among the Sun’s most energetic activity events yet the physical mechanisms that lead to their occurrence are not yet fully understood. They can drive major space weather impacts at Earth, so knowing why and when these ejections will occur is required for accurate space weather forecasts. In this study we use a 4 day time series of a quantity known as the helicity ratio, ∣H
J
∣/∣H
V
∣ (helicity of the current-carrying part of the active region field to the total relative magnetic helicity within the volume), which has been computed from nonlinear force-free field extrapolations of NOAA active region 11158. We compare the evolution of ∣H
J
∣/∣H
V
∣ with the activity produced in the corona of the active region and show this ratio can be used to indicate when the active region is prone to eruption. This occurs when ∣H
J
∣/∣H
V
∣ exceeds a value of 0.1, as suggested by previous studies. We find the helicity ratio variations to be more pronounced during times of strong flux emergence, collision and reconnection between fields of different bipoles, shearing motions, and reconfiguration of the corona through failed and successful eruptions. When flux emergence, collision, and shearing motions have lessened, the changes in helicity ratio are somewhat subtle despite the occurrence of significant eruptive activity during this time
- …