56 research outputs found

    Combination of Co3O4 deposited rGO hybrid nanofluids and longitudinal strip inserts: thermal properties, heat transfer, friction factor, and thermal performance evaluations

    Get PDF
    The reduced-graphene oxide/cobalt oxide hybrid nanoparticles were prepared based on the in-situ/chemical co-precipitation technique, and they were analyzed by transmission electron microscope, x-ray diffraction, and magnetometer techniques. The hybrid nanofluids were prepared with particle loadings of 0.05%, 0.1%, and 0.2% by dispersing synthesized reduced-graphene oxide/cobalt oxide in distilled water and their physical properties were measured. The thermal performance of the nanofluids was studied, when they flow in the turbulent regime through a circular tube. The thermal performance was also evaluated when straight (longitudinal) strip inserts with aspect ratios of 1, 2, and 4, were used inside the circular. These straight strip inserts by increasing the flow turbulence intensity act as turbulators. Results indicate that with a dilution of 0.2% concentration of hybrid nanoparticles in water, the Nusselt number is enhanced by 25.65%, and it is further enhanced by 110.56% with a straight strip insert of aspect ratio 1. The use of hybrid nanofluids and straight strip inserts leads to a slight penalty in fluid friction. For 0.2% concentration of hybrid nanoparticles in water, the penalty in friction factor is 11%, and it is further increased to 69.8% with 0.2% particle loadings and a straight strip insert of aspect ratio1. Moreover, the thermal performance factor of hybrid nanofluids with and without straight strip inserts presents values higher than 1, which shows the benefit of the prepared hybrid nanofluids in a turbulent flow. A general form of regression equations are developed based on the experimental data.publishe

    Efficiency, energy and economic analysis of twisted tape inserts in a thermosyphon solar flat plate collector with Cu nanofluids

    Get PDF
    Heat transfer, friction factor and efficiency of a thermosyphon type flat plate collector with and without twisted tape inserts were analyzed experimentally. Water based Cu nanofluids were used as the absorber fluid to receive the heat from solar radiation into the flat plate collector. The experiments were conducted for volume concentrations of 0.1% and 0.3% and twist ratios of H/D = 5, 10 and 15. Results reveal that the heat transfer rate and efficiency of nanofluids increase with the increase of particle volume concentrations. The Nusselt number of 0.3% nanofluid is enhanced up to 20.46%, and it is further enhanced up to 46.90% with twisted tape insert of H/D = 5 with a maximum friction factor penalty of 1.477-times compared to plain collector. The efficiency of the solar collector with water is 52% and it is enhanced to 58% for 0.3% nanofluid, whereas it is further enhanced to 64% for 0.3% nanofluid with twisted tape insert of H/D = 5. Empirical correlations are proposed based on the experimental data for the friction factor and Nusselt number with a standard deviation of less than ±6.5%. The study indicates that for 100 units of solar flat plate collector the use of 0.1% and 0.3% Cu nanofluids leads to weight savings of 284 kg and 567 kg, respectively. The total weight of 100 units of solar flat plate collector is further saved by 767 kg, 1050 kg and 1250 kg for 0.3% nanofluid with twisted tape inserts of H/D = 15, H/D = 10 and H/D = 5, respectively. The collector cost is reduced by 5.66% and 11.33% for 0.1% and 0.3% nanofluids, and it is further reduced to 25% for 0.3% nanofluid with a twisted tape insert of H/D = 5.publishe

    Optimizing density, dynamic viscosity, thermal conductivity and specific heat of a hybrid nanofluid obtained experimentally via ANFIS-based model and modern optimization

    Get PDF
    In this study, rGO/Co3O4 nanocomposite was synthesized, characterized, and then the thermophysical properties were obtained experimentally, after which the experimental data at varying values of temperature and particle loadings was used for optimization purposes. The study was concerned with different values of the controlling parameters. The in-situ/chemical reduction technique was used to synthesize the rGO/Co3O4 nanocomposite and then characterized with x-ray diffraction, transmission electron microscope, and magnetometry. The system was studied at temperature values ranging at 20, 30, 40, 50, and 60 °C and with particle loadings of 0.05%, 0.1%, and 0.2% wt%. The authors in this article have introduced a novel population-based algorithm that is known as Marine Predators Algorithm to obtain the optimal values of the controlling parameters (i.e., temperature and nanofluid mixture percentage) that minimize two controlled variables (i.e., density and viscosity) as well as maximize the other two controlled variables (thermal conductivity and specific heat). The rGO/Co3O4 nanocomposite nanofluid thermal conductivity and viscosity were investigated experimentally, and a maximum increment of 19.14% and 70.83% with 0.2% particle loadings at 60 °C was obtained. At 0.05%, 0.1%, and 0.2% particle loading wt%, the density increased by 0.115%, 0.23%, and 0.451% at a temperature of 20 °C; simultaneously, density increased by 0.117%%, 0.235%, and 0.469% at 60 °C, respectively as compared to water. At 0.2 wt%, the maximum decreased specific heat was 0.192% and 0.194% at 20 °C and 60 °C. When compared with water, no effect was observed with an increase in temperature/: a similar trend as that of the water was followed. The optimal values were found to be at a temperature of 60 °C and for 0.05% particle loading of the prepared nanofluid. However, among the conducted experiments, the optimizer pointed out that the optimal experiment was the one conducted at a temperature of 60 °C and a nanofluid percentage at 0.05. In conclusion, the proposed methodology of modelling with an artificial intelligence tool such as an adaptive network-based fuzzy inference system technique and then determining the optimal parameters with the marine predators algorithm accomplished the goal of the study with major success.publishe

    Parasitic Strip Loaded Dual Band Notch Circular Monopole Antenna with Defected Ground Structure

    Get PDF
    In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation

    Circle grid fractal plate as a turbulent generator for premixed flame: an overview

    Get PDF
    This review paper focuses to ascertain a new approach in turbulence generation on the structure of premixed flames and external combustion using a fractal grid pattern. This review paper discusses the relationship between fractal pattern and turbulence flow. Many researchers have explored the fractal pattern as a new concept of turbulence generators, but researchers rarely study fractal turbulence generators on the structure premixed flame. The turbulent flow field characteristics have been studied tand investigated in a premixed combustion application. In terms of turbulence intensity, most researchers used fractal grid that can be tailored so that they can design the characteristic needed in premixed flame. This approach makes it extremely difficult to determine the exact turbulent burning velocity on the velocity fluctuation of the flow. The decision to carry out additional research on the effect circle grid fractal plate as a turbulent generator for premixed flame should depends on the blockage ratio and fractal pattern of the grid. 1

    Effect of non-conjugate and conjugate condition on heat transfer from the battery pack

    Get PDF
    Li-ion battery packs provide high energy density but with a concern of thermal management. Hence cooling mechanism is necessary to have a good life and reliability on the battery system. The main objective of this article is to investigate the effect of conjugate and non-conjugate boundary conditions on battery pack heat transfer characteristics. In conjugate conditions, coolant flow is considered with heat flux continuity at the battery and fluid interface. In non-conjugate condition, just convection condition is adopted. The finite volume method is adopted for the numerical analysis, and a code is written for computations of the governing equations. Effects of different parameters like heat generation, conductivity ratio, coolants, and Biot number on temperature distribution in the battery pack are analyzed. The maximum temperature contours are located near the top end of the battery, whereas at the bottom end, the battery’s temperature is low. Such high and low-temperature regions in the battery pack create uneven thermal stresses, resulting in battery failure. To have better performance results for the battery system, one should maintain the proper balance of thermal conductivity between the solid and fluid domains. From the comparative analysis, it is found that the non-conjugate condition gives the temperature distribution in the battery to be of symmetrical nature and more uniform. Practically, this is not true which is confirmed by the realistic conjugate condition where the high-temperature zones are closer to the trailing edge of the battery pack. Liquid metals and nanofluids provide a much safer operating temperature of the pack where the maximum temperature is well below the critical temperature. The application of conjugate conditions for battery thermal analysis leads to having an insight of the hotspot zones accurately which are operated using conventional fluids mentioned in this work

    Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    Get PDF
    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration

    Laminar Convective Heat Transfer And Friction Factor Of AL2O3 Nanofluid In Circular Tube Fitted With Twisted Tape Inserts

    Get PDF
    We experimentally investigated the fully developed laminar convective heat transfer and friction factor characteristics of different volume concentrations of Al2O3 nanofluid in a plain tube and fitted with different twist ratios of twisted tape inserts. Experiments were conducted with water and nanofluid in the range of 700 Re2200, particle volume concentration of 0.5%, and twisted tape twist ratios of 0H / D15. The nanofluid heat transfer coefficient is high compared to water and further heat transfer enhancement is observed with twisted tape inserts. The pressure drop increases slightly with the inserts, but is comparatively negligible. A generalized regression equation is developed based on the experimental data for the estimation of the Nusselt number and friction factor for water and nanofluid in a plain tube and with twisted tape inserts

    Synthesis and characterization of hybrid nanofluids and their usage in different heat exchangers for an improved heat transfer rates: A critical review

    No full text
    The heat exchangers are commonly used in thermal power companies, chemical factories, petroleum industries, and etc for the purpose of exchange heat from one fluid to another fluid. Wide varieties of heat exchangers are available and those are working with single phase fluids and they offer less thermal efficiency. The miniaturization of heat exchangers and its energy efficiency improvements has become an attractive point for the researchers. Improvement of energy efficiency of heat exchangers is possible by replacing the working fluid with high thermal conductivity fluids called as nanofluids. The nanofluids are recently developed fluids that promises, pronouncedly, greater heat absorbing and heat transport ability. Apart from that, the hybrid nanofluids are defined as the dilution of hybrid nanoparticles into the base fluids, which gives a synergistic properties compared to mono nanofluids as well as the base fluids. The hybrid nanofluids flow in heat exchangers may give higher energy efficiency because of the synergistic thermophysical properties. This review article attempts to discuss the available literature on the utilization of hybrid nanofluids in a wide variety of heat exchangers. First section of this paper will discuss about the availability of various hybrid nanoparticles synthesis techniques and followed by hybrid nanofluids production, stability and thermo-physical properties. The second section of this paper will discuss about the utilization of hybrid nanofluids in a different heat exchangers. The review is also inspects the use of hybrid nanofluids in a heat exchangers based on the experimental and numerical studies. A review of previously suggested research works for the use of hybrid nanofluids and also discussed its overall performance
    corecore