350 research outputs found

    Permutation combinatorics of worldsheet moduli space

    Get PDF
    52 pages, 21 figures52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published version52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published versio

    Ranking the Impact of Different Tests on a Hypothesis in a Bayesian Network

    Get PDF
    Testing of evidence in criminal cases can be limited by temporal or financial constraints or by the fact that certain tests may be mutually exclusive, so choosing the tests that will have maximal impact on the final result is essential. In this paper, we assume that a main hypothesis, evidence for it and possible tests for existence of this evidence are represented in the form of a Bayesian network, and use three different methods to measure the impact of a test on the main hypothesis. We illustrate the methods by applying them to an actual digital crime case provided by the Hong Kong police. We conclude that the Kullback-Leibler divergence is the optimal method for selecting the tests with the highest impact

    Strings from Feynman Graph counting : without large N

    Full text link
    A well-known connection between n strings winding around a circle and permutations of n objects plays a fundamental role in the string theory of large N two dimensional Yang Mills theory and elsewhere in topological and physical string theories. Basic questions in the enumeration of Feynman graphs can be expressed elegantly in terms of permutation groups. We show that these permutation techniques for Feynman graph enumeration, along with the Burnside counting lemma, lead to equalities between counting problems of Feynman graphs in scalar field theories and Quantum Electrodynamics with the counting of amplitudes in a string theory with torus or cylinder target space. This string theory arises in the large N expansion of two dimensional Yang Mills and is closely related to lattice gauge theory with S_n gauge group. We collect and extend results on generating functions for Feynman graph counting, which connect directly with the string picture. We propose that the connection between string combinatorics and permutations has implications for QFT-string dualities, beyond the framework of large N gauge theory.Comment: 55 pages + 10 pages Appendices, 23 figures ; version 2 - typos correcte

    M. Kontsevich's graph complex and the Grothendieck-Teichmueller Lie algebra

    Full text link
    We show that the zeroth cohomology of M. Kontsevich's graph complex is isomorphic to the Grothendieck-Teichmueller Lie algebra grt_1. The map is explicitly described. This result has applications to deformation quantization and Duflo theory. We also compute the homotopy derivations of the Gerstenhaber operad. They are parameterized by grt_1, up to one class (or two, depending on the definitions). More generally, the homotopy derivations of the (non-unital) E_n operads may be expressed through the cohomology of a suitable graph complex. Our methods also give a second proof of a result of H. Furusho, stating that the pentagon equation for grt_1-elements implies the hexagon equation

    The Beta Ansatz: A Tale of Two Complex Structures

    Get PDF
    Brane tilings, sometimes called dimer models, are a class of bipartite graphs on a torus which encode the gauge theory data of four-dimensional SCFTs dual to D3-branes probing toric Calabi-Yau threefolds. An efficient way of encoding this information exploits the theory of dessin d’enfants, expressing the structure in terms of a permutation triple, which is in turn related to a Belyi pair, namely a holomorphic map from a torus to a P1 with three marked points. The procedure of a-maximization, in the context of isoradial embeddings of the dimer, also associates a complex structure to the torus, determined by the R-charges in the SCFT, which can be compared with the Belyi complex structure. Algorithms for the explicit construction of the Belyi pairs are described in detail. In the case of orbifolds, these algorithms are related to the construction of covers of elliptic curves, which exploits the properties of Weierstraß elliptic functions. We present a counter example to a previous conjecture identifying the complex structure of the Belyi curve to the complex structure associated with R-charges

    Search for the Proton Decay Mode proton to neutrino K+ in Soudan 2

    Full text link
    We have searched for the proton decay mode proton to neutrino K+ using the one-kiloton Soudan 2 high resolution calorimeter. Contained events obtained from a 3.56 kiloton-year fiducial exposure through June 1997 are examined for occurrence of a visible K+ track which decays at rest into mu+ nu or pi+ pi0. We found one candidate event consistent with background, yielding a limit, tau/B > 4.3 10^{31} years at 90% CL with no background subtraction.Comment: 13 pages, Latex, 3 tables and 3 figures, Accepted by Physics Letters

    Neutrino Interactions In Oscillation Experiments

    Get PDF
    We calculate neutrino induced cross-sections relevant for oscillation experiments, including the Ď„\tau-lepton threshold for quasi-elastic, resonance and deep inelastic scattering. In addition to threshold effects, we include nuclear corrections for heavy targets which are moderate for quasi-elastic and large for single pion production. Nuclear effects for deep inelastic reactions are small. We present cross sections together with their nuclear corrections for various channels which are useful for interpreting the experimental results and for determining parameters of the neutrino sector..Comment: 24 pages, 18 figure

    A Study of Cosmic Ray Composition in the Knee Region using Multiple Muon Events in the Soudan 2 Detector

    Full text link
    Deep underground muon events recorded by the Soudan 2 detector, located at a depth of 2100 meters of water equivalent, have been used to infer the nuclear composition of cosmic rays in the "knee" region of the cosmic ray energy spectrum. The observed muon multiplicity distribution favors a composition model with a substantial proton content in the energy region 800,000 - 13,000,000 GeV/nucleus.Comment: 38 pages including 11 figures, Latex, submitted to Physical Review

    The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance

    Full text link
    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 microns. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1, 6.4, 6.5 and 12.0 arc-seconds at 3.4, 4.6, 12 and 22 microns, and the astrometric precision for high SNR sources is better than 0.15 arc-seconds.Comment: 22 pages with 19 included figures. Updated to better match the accepted version in the A

    The classification of isotrivially fibred surfaces with p_g=q=2

    Get PDF
    An isotrivially fibred surface is a smooth projective surface endowed with a morphism onto a curve such that all the smooth fibres are isomorphic to each other. The first goal of this paper is to classify the isotrivially fibred surfaces with pg=q=2p_g=q=2 completing and extending a result of Zucconi. As an important byproduct, we provide new examples of minimal surfaces of general type with pg=q=2p_g=q=2 and K2=4,5K^2=4,5 and a first example with K2=6K^2=6.Comment: Main paper by M.Penegini. Appendix by S.Rollenske. 31 pages, 6 Figures. v2 changed group relations in Theorem 5.2, changes in Theorem 5.7, new proof of Theorem 4.15, minor corrections of misprint
    • …
    corecore