We show that the zeroth cohomology of M. Kontsevich's graph complex is
isomorphic to the Grothendieck-Teichmueller Lie algebra grt_1. The map is
explicitly described. This result has applications to deformation quantization
and Duflo theory. We also compute the homotopy derivations of the Gerstenhaber
operad. They are parameterized by grt_1, up to one class (or two, depending on
the definitions). More generally, the homotopy derivations of the (non-unital)
E_n operads may be expressed through the cohomology of a suitable graph
complex. Our methods also give a second proof of a result of H. Furusho,
stating that the pentagon equation for grt_1-elements implies the hexagon
equation