6,452 research outputs found
Lower bounds for several online variants of bin packing
We consider several previously studied online variants of bin packing and
prove new and improved lower bounds on the asymptotic competitive ratios for
them. For that, we use a method of fully adaptive constructions. In particular,
we improve the lower bound for the asymptotic competitive ratio of online
square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201
A Robust AFPTAS for Online Bin Packing with Polynomial Migration
In this paper we develop general LP and ILP techniques to find an approximate
solution with improved objective value close to an existing solution. The task
of improving an approximate solution is closely related to a classical theorem
of Cook et al. in the sensitivity analysis for LPs and ILPs. This result is
often applied in designing robust algorithms for online problems. We apply our
new techniques to the online bin packing problem, where it is allowed to
reassign a certain number of items, measured by the migration factor. The
migration factor is defined by the total size of reassigned items divided by
the size of the arriving item. We obtain a robust asymptotic fully polynomial
time approximation scheme (AFPTAS) for the online bin packing problem with
migration factor bounded by a polynomial in . This answers
an open question stated by Epstein and Levin in the affirmative. As a byproduct
we prove an approximate variant of the sensitivity theorem by Cook at el. for
linear programs
Building Bridges with Boats: Preserving Community History through Intra- and Inter-Institutional Collaboration
This chapter discusses Launching through the Surf: The Dory Fleet of Pacific City, a project which documents the historical and contemporary role of dory fishers in the life of the coastal village of Pacific City, Oregon, U.S. Linfield Collegeâs Department of Theatre and Communication Arts, its Jereld R. Nicholson Library, the Pacific City Arts Association, the Pacific City Dorymen\u27s Association, and the Linfield Center for the Northwest joined forces to engage in a collaborative college and community venture to preserve this important facet of Oregonâs history. Using ethnography as a theoretical grounding and oral history as a method, the project utilized artifacts from the dory fleet to augment interview data, and faculty/student teams created a searchable digital archive available via open access. The chapter draws on the authorsâ experiences to identify a philosophy of strategic collaboration. Topics include project development and management, assessment, and the role of serendipity. In an era of value-added services where libraries need to continue to prove their worth, partnering with internal and external entities to create content is one way for academic libraries to remain relevant to agencies that do not have direct connections to higher education. This project not only developed a positive âtown and gownâ relationship with a regional community, it also benefited partner organizations as they sought to fulfill their missions. The project also serves as a potential model for intra- and inter-agency collaboration for all types of libraries
Scale Dependent Dimension of Luminous Matter in the Universe
We present a geometrical model of the distribution of luminous matter in the
universe, derived from a very simple reaction-diffusion model of turbulent
phenomena. The apparent dimension of luminous matter, , depends linearly
on the logarithm of the scale under which the universe is viewed: , where is a correlation length.
Comparison with data from the SARS red-shift catalogue, and the LEDA database
provides a good fit with a correlation length Mpc. The
geometrical interpretation is clear: At small distances, the universe is
zero-dimensional and point-like. At distances of the order of 1 Mpc the
dimension is unity, indicating a filamentary, string-like structure; when
viewed at larger scales it gradually becomes 2-dimensional wall-like, and
finally, at and beyond the correlation length, it becomes uniform.Comment: 6 pages, 2 figure
Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition
A logarithmic spiral is a prominent feature appearing in a majority of
observed galaxies. This feature has long been associated with the traditional
Hubble classification scheme, but historical quotes of pitch angle of spiral
galaxies have been almost exclusively qualitative. We have developed a
methodology, utilizing two-dimensional fast Fourier transformations of images
of spiral galaxies, in order to isolate and measure the pitch angles of their
spiral arms. Our technique provides a quantitative way to measure this
morphological feature. This will allow comparison of spiral galaxy pitch angle
to other galactic parameters and test spiral arm genesis theories. In this
work, we detail our image processing and analysis of spiral galaxy images and
discuss the robustness of our analysis techniques.Comment: 23 pages, 22 figures, and 3 Tables; published in ApJS 199, 33
http://iopscience.iop.org/0067-0049/199/2/33/; software available for
download at http://dafix.uark.edu/~ages/downloads.html and
http://astro.host.ualr.edu/2DFFT
Radiation Campaign of HPK Prototype LGAD sensors for the High-Granularity Timing Detector (HGTD)
We report on the results of a radiation campaign with neutrons and protons of
Low Gain Avalanche Detectors (LGAD) produced by Hamamatsu (HPK) as prototypes
for the High-Granularity Timing Detector (HGTD) in ATLAS. Sensors with an
active thickness of 50~m were irradiated in steps of roughly 2 up
to a fluence of . As a function of the
fluence, the collected charge and time resolution of the irradiated sensors
will be reported for operation at
Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing
Intermittent magnetohydrodynamical turbulence is most likely at work in the
magnetized solar atmosphere. As a result, an array of scaling and multi-scaling
image-processing techniques can be used to measure the expected
self-organization of solar magnetic fields. While these techniques advance our
understanding of the physical system at work, it is unclear whether they can be
used to predict solar eruptions, thus obtaining a practical significance for
space weather. We address part of this problem by focusing on solar active
regions and by investigating the usefulness of scaling and multi-scaling
image-processing techniques in solar flare prediction. Since solar flares
exhibit spatial and temporal intermittency, we suggest that they are the
products of instabilities subject to a critical threshold in a turbulent
magnetic configuration. The identification of this threshold in scaling and
multi-scaling spectra would then contribute meaningfully to the prediction of
solar flares. We find that the fractal dimension of solar magnetic fields and
their multi-fractal spectrum of generalized correlation dimensions do not have
significant predictive ability. The respective multi-fractal structure
functions and their inertial-range scaling exponents, however, probably provide
some statistical distinguishing features between flaring and non-flaring active
regions. More importantly, the temporal evolution of the above scaling
exponents in flaring active regions probably shows a distinct behavior starting
a few hours prior to a flare and therefore this temporal behavior may be
practically useful in flare prediction. The results of this study need to be
validated by more comprehensive works over a large number of solar active
regions.Comment: 26 pages, 7 figure
Screening of antioxidant properties of the apple juice using the front-face synchronous fluorescence and chemometrics
Fluorescence spectroscopy is gaining increasing attention in food analysis due to its higher sensitivity and selectivity as compared to other spectroscopic techniques. Synchronous scanning fluorescence technique is particularly useful in studies of multi-fluorophoric food samples, providing a further improvement of selectivity by reduction in the spectral overlapping and suppressing light-scattering interferences. Presently, we study the feasibility of the prediction of the total phenolics, flavonoids, and antioxidant capacity using front-face synchronous fluorescence spectra of apple juices. Commercial apple juices from different product ranges were studied. Principal component analysis (PCA) applied to the unfolded synchronous fluorescence spectra was used to compare the fluorescence of the entire sample set. The regression analysis was performed using partial least squares (PLS1 and PLS2) methods on the unfolded total synchronous and on the single-offset synchronous fluorescence spectra. The best calibration models for all of the studied parameters were obtained using the PLS1 method for the single-offset synchronous spectra. The models for the prediction of the total flavonoid content had the best performance; the optimal model was obtained for the analysis of the synchronous fluorescence spectra at Delta lambda = 110 nm (R (2) = 0.870, residual predictive deviation (RPD) = 2.7). The optimal calibration models for the prediction of the total phenolic content (Delta lambda = 80 nm, R (2) = 0.766, RPD = 2.0) and the total antioxidant capacity (Delta lambda = 70 nm, R (2) = 0.787, RPD = 2.1) had only an approximate predictive ability. These results demonstrate that synchronous fluorescence could be a useful tool in fast semi-quantitative screening for the antioxidant properties of the apple juices.info:eu-repo/semantics/publishedVersio
A double-sided silicon micro-strip super-module for the ATLAS inner detector upgrade in the high-luminosity LHC
The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 Ă 1034 cmâ2 sâ1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail
- âŠ