412 research outputs found

    Acute Respiratory Distress Syndrome:The Berlin Definition

    Get PDF
    The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm HgPaO2/FIO2300 mmHg), moderate (100mmHgPaO2/FIO2200mmHg), and severe (PaO2/FIO2100mmHg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (40 mL/cm H2O), positive endexpiratory pressure (10 cm H2O), and corrected expired volume per minute(10 L/min). The draft Berlin Definition was empirically evaluated using patientlevel meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%;95%CI, 24%-30%; 32%;95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P.001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P.001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P.001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning

    Machine-learning assisted swallowing assessment: a deep learning-based quality improvement tool to screen for post-stroke dysphagia

    Get PDF
    IntroductionPost-stroke dysphagia is common and associated with significant morbidity and mortality, rendering bedside screening of significant clinical importance. Using voice as a biomarker coupled with deep learning has the potential to improve patient access to screening and mitigate the subjectivity associated with detecting voice change, a component of several validated screening protocols.MethodsIn this single-center study, we developed a proof-of-concept model for automated dysphagia screening and evaluated the performance of this model on training and testing cohorts. Patients were admitted to a comprehensive stroke center, where primary English speakers could follow commands without significant aphasia and participated on a rolling basis. The primary outcome was classification either as a pass or fail equivalent using a dysphagia screening test as a label. Voice data was recorded from patients who spoke a standardized set of vowels, words, and sentences from the National Institute of Health Stroke Scale. Seventy patients were recruited and 68 were included in the analysis, with 40 in training and 28 in testing cohorts, respectively. Speech from patients was segmented into 1,579 audio clips, from which 6,655 Mel-spectrogram images were computed and used as inputs for deep-learning models (DenseNet and ConvNext, separately and together). Clip-level and participant-level swallowing status predictions were obtained through a voting method.ResultsThe models demonstrated clip-level dysphagia screening sensitivity of 71% and specificity of 77% (F1 = 0.73, AUC = 0.80 [95% CI: 0.78–0.82]). At the participant level, the sensitivity and specificity were 89 and 79%, respectively (F1 = 0.81, AUC = 0.91 [95% CI: 0.77–1.05]).DiscussionThis study is the first to demonstrate the feasibility of applying deep learning to classify vocalizations to detect post-stroke dysphagia. Our findings suggest potential for enhancing dysphagia screening in clinical settings. https://github.com/UofTNeurology/masa-open-source

    Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    Get PDF
    OBJECTIVE: To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." DESIGN: A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. RESULTS: The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. CONCLUSIONS: Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality

    The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)

    Get PDF
    IMPORTANCE: Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. OBJECTIVE: To evaluate and, as needed, update definitions for sepsis and septic shock. PROCESS: A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). KEY FINDINGS FROM EVIDENCE SYNTHESIS: Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. RECOMMENDATIONS: Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. CONCLUSIONS AND RELEVANCE: These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis

    Red blood cell transfusion and outcomes in patients with acute lung injury, sepsis and shock

    Get PDF
    Introduction: In this study, we sought to determine the association between red blood cell (RBC) transfusion and outcomes in patients with acute lung injury (ALI), sepsis and shock.Methods: We performed a secondary analysis of new-onset ALI patients enrolled in the Acute Respiratory Distress Syndrome Network Fluid and Catheter Treatment Trial (2000 to 2005) who had a documented ALI risk factor of sepsis or pneumonia and met shock criteria (mean arterial pressure (MAP) < 60 mmHg or vasopressor use) within 24 hours of randomization. Using multivariable logistic regression, we examined the association between RBC transfusion and 28-day mortality after adjustment for age, sex, race, randomization arm and Acute Physiology and Chronic Health Evaluation III score. Secondary end points included 90-day mortality and ventilator-free days (VFDs). Finally, we examined these end points among the subset of subjects meeting prespecified transfusion criteria defined by five simultaneous indicators: hemoglobin < 10.2 g/dL, central or mixed venous oxygen saturation < 70%, central venous pressure ≥ 8 mmHg, MAP ≥ 65 mmHg, and vasopressor use.Results: We identified 285 subjects with ALI, sepsis, shock and transfusion data. Of these, 85 also met the above prespecified transfusion criteria. Fifty-three (19%) of the two hundred eighty-five subjects with shock and twenty (24%) of the subset meeting the transfusion criteria received RBC transfusion within twenty-four hours of randomization. We found no independent association between RBC transfusion and 28-day mortality (odds ratio = 1.49, 95% CI (95% confidence interval) = 0.77 to 2.90; P = 0.23) or VFDs (mean difference = -0.35, 95% CI = -4.03 to 3.32; P = 0.85). Likewise, 90-day mortality and VFDs did not differ by transfusion status. Among the subset of patients meeting the transfusion criteria, we found no independent association between transfusion and mortality or VFDs.Conclusions: In patients with new-onset ALI, sepsis and shock, we found no independent association between RBC transfusion and mortality or VFDs. The physiological criteria did not identify patients more likely to be transfused or to benefit from transfusion. © 2011 Parsons et al. licensee BioMed Central Ltd

    Decreased respiratory system compliance on the sixth day of mechanical ventilation is a predictor of death in patients with established acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple studies have identified single variables or composite scores that help risk stratify patients at the time of acute lung injury (ALI) diagnosis. However, few studies have addressed the important question of how changes in pulmonary physiologic variables might predict mortality in patients during the subacute or chronic phases of ALI. We studied pulmonary physiologic variables, including respiratory system compliance, P/F ratio and oxygenation index, in a cohort of patients with ALI who survived more than 6 days of mechanical ventilation to see if changes in these variables were predictive of death and whether they are informative about the pathophysiology of subacute ALI.</p> <p>Methods</p> <p>Ninety-three patients with ALI who were mechanically ventilated for more than 6 days were enrolled in this prospective cohort study. Patients were enrolled at two medical centers in the US, a county hospital and a large academic center. Bivariate analyses were used to identify pulmonary physiologic predictors of death during the first 6 days of mechanical ventilation. Predictors on day 1, day 6 and the changes between day 1 and day 6 were compared in a multivariate logistic regression model.</p> <p>Results</p> <p>The overall mortality was 35%. In multivariate analysis, the PaO<sub>2</sub>/FiO<sub>2 </sub>(OR 2.09, p < 0.04) and respiratory system compliance (OR 3.61, p < 0.01) were predictive of death on the 6<sup>th </sup>day of acute lung injury. In addition, a decrease in respiratory system compliance between days 1 and days 6 (OR 2.14, p < 0.01) was independently associated with mortality.</p> <p>Conclusions</p> <p>A low respiratory system compliance on day 6 or a decrease in the respiratory system compliance between the 1<sup>st </sup>and 6<sup>th </sup>day of mechanical ventilation were associated with increased mortality in multivariate analysis of this cohort of patients with ALI. We suggest that decreased respiratory system compliance may identify a subset of patients who have persistent pulmonary edema, atelectasis or the fibroproliferative sequelae of ALI and thus are less likely to survive their hospitalization.</p

    Death in hospital following ICU discharge : insights from the LUNG SAFE study

    Get PDF
    Background: To determine the frequency of, and factors associated with, death in hospital following ICU discharge to the ward. Methods: The Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE study was an international, multicenter, prospective cohort study of patients with severe respiratory failure, conducted across 459 ICUs from 50 countries globally. This study aimed to understand the frequency and factors associated with death in hospital in patients who survived their ICU stay. We examined outcomes in the subpopulation discharged with no limitations of life sustaining treatments (‘treatment limitations’), and the subpopulations with treatment limitations. Results: 2186 (94%) patients with no treatment limitations discharged from ICU survived, while 142 (6%) died in hospital. 118 (61%) of patients with treatment limitations survived while 77 (39%) patients died in hospital. Patients without treatment limitations that died in hospital after ICU discharge were older, more likely to have COPD, immunocompromise or chronic renal failure, less likely to have trauma as a risk factor for ARDS. Patients that died post ICU discharge were less likely to receive neuromuscular blockade, or to receive any adjunctive measure, and had a higher pre- ICU discharge non-pulmonary SOFA score. A similar pattern was seen in patients with treatment limitations that died in hospital following ICU discharge. Conclusions: A significant proportion of patients die in hospital following discharge from ICU, with higher mortality in patients with limitations of life-sustaining treatments in place. Non-survivors had higher systemic illness severity scores at ICU discharge than survivors. Trial Registration: ClinicalTrials.gov NCT02010073

    Recovery after critical illness: putting the puzzle together-a consensus of 29.

    Get PDF
    In this review, we seek to highlight how critical illness and critical care affect longer-term outcomes, to underline the contribution of ICU delirium to cognitive dysfunction several months after ICU discharge, to give new insights into ICU acquired weakness, to emphasize the importance of value-based healthcare, and to delineate the elements of family-centered care. This consensus of 29 also provides a perspective and a research agenda about post-ICU recovery
    • …
    corecore