254 research outputs found

    UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes

    Get PDF
    Interactions of the ESCRT complexes are critical for endosomal trafficking. We identify two domains with potential significance for this process. The MABP domain present in metazoan ESCRT-I/MVB12 subunits, Crag, a regulator of protein sorting, and bacterial pore-forming proteins might mediate novel membrane interactions in trafficking. The UBAP1-MVB12-associated UMA domain found in MVB12 and UBAP1 defines a novel adaptor that might recruit diverse targets to ESCRT-I

    The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin.

    Get PDF
    Uromodulin is the most abundant protein in the urine. It is exclusively produced by renal epithelial cells and it plays key roles in kidney function and disease. Uromodulin mainly exerts its function as an extracellular matrix whose assembly depends on a conserved, specific proteolytic cleavage leading to conformational activation of a Zona Pellucida (ZP) polymerisation domain. Through a comprehensive approach, including extensive characterisation of uromodulin processing in cellular models and in specific knock-out mice, we demonstrate that the membrane-bound serine protease hepsin is the enzyme responsible for the physiological cleavage of uromodulin. Our findings define a key aspect of uromodulin biology and identify the first in vivo substrate of hepsin. The identification of hepsin as the first protease involved in the release of a ZP domain protein is likely relevant for other members of this protein family, including several extracellular proteins, as egg coat proteins and inner ear tectorins

    A comprehensive, high-resolution genomic transcript map of human skeletal muscle

    Get PDF

    Characterisation of five candidate genes within the ETEC F4ab/ac candidate region in pigs

    Get PDF
    BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) that express the F4ab and F4ac fimbriae is a major contributor to diarrhoea outbreaks in the pig breeding industry, infecting both newborn and weaned piglets. Some pigs are resistant to this infection, and susceptibility is inherited as a simple dominant Mendelian trait. Indentifying the genetics behind this trait will greatly benefit pig welfare as well as the pig breeding industry by providing an opportunity to select against genetically susceptible animals, thereby reducing the number of diarrhoea outbreaks. The trait has recently been mapped by haplotype sharing to a 2.5 Mb region on pig chromosome 13, a region containing 18 annotated genes. FINDINGS: The coding regions of five candidate genes for susceptibility to ETEC F4ab/ac infection (TFRC, ACK1, MUC20, MUC4 and KIAA0226), all located in the 2.5 Mb region, were investigated for the presence of possible causative mutations. A total of 34 polymorphisms were identified in either coding regions or their flanking introns. The genotyping data for two of those were found to perfectly match the genotypes at the ETEC F4ab/ac locus, a G to C polymorphism in intron 11 of TFRC and a C to T silent polymorphism in exon 22 of KIAA0226. Transcriptional profiles of the five genes were investigated in a porcine tissue panel including various intestinal tissues. All five genes were expressed in intestinal tissues at different levels but none of the genes were found differentially expressed between ETEC F4ab/ac resistant and ETEC F4ab/ac susceptible animals in any of the tested tissues. CONCLUSIONS: None of the identified polymorphisms are obvious causative mutations for ETEC F4ab/ac susceptibility, as they have no impact on the level of the overall mRNA expression nor predicted to influence the composition of the amino acids composition. However, we cannot exclude that the five tested genes are bona fide candidate genes for susceptibility to ETEC F4ab/ac infection since the identified polymorphism might affect the translational apparatus, alternative splice forms may exist and post translational mechanisms might contribute to disease susceptibility

    Urinary secretion and extracellular aggregation of mutant uromodulin isoforms

    Get PDF
    Uromodulin is exclusively expressed in the thick ascending limb and is the most abundant protein secreted in urine where it is found in high-molecular-weight polymers. Its biological functions are still elusive, but it is thought to play a protective role against urinary tract infection, calcium oxalate crystal formation, and regulation of water and salt balance in the thick ascending limb. Mutations in uromodulin are responsible for autosomal-dominant kidney diseases characterized by defective urine concentrating ability, hyperuricemia, gout, tubulointerstitial fibrosis, renal cysts, and chronic kidney disease. Previous in vitro studies found retention in the endoplasmic reticulum as a common feature of all uromodulin mutant isoforms. Both in vitro and in vivo we found that mutant isoforms partially escaped retention in the endoplasmic reticulum and reached the plasma membrane where they formed large extracellular aggregates that have a dominant-negative effect on coexpressed wild-type protein. Notably, mutant uromodulin excretion was detected in patients carrying uromodulin mutations. Thus, our results suggest that mutant uromodulin exerts a gain-of-function effect that can be exerted by both intra- and extracellular forms of the protein

    Association of Estimated Glomerular Filtration Rate and Urinary Uromodulin Concentrations with Rare Variants Identified by UMOD Gene Region Sequencing

    Get PDF
    Background: Recent genome-wide association studies (GWAS) have identified common variants in the UMOD region associated with kidney function and disease in the general population. To identify novel rare variants as well as common variants that may account for this GWAS signal, the exons and 4 kb upstream region of UMOD were sequenced. Methodology/Principal Findings Individuals (n = 485) were selected based on presence of the GWAS risk haplotype and chronic kidney disease (CKD) in the ARIC Study and on the extremes of of the UMOD gene product, uromodulin, in urine (Tamm Horsfall protein, THP) in the Framingham Heart Study (FHS). Targeted sequencing was conducted using capillary based Sanger sequencing (3730 DNA Analyzer). Variants were tested for association with THP concentrations and estimated glomerular filtration rate (eGFR), and identified non-synonymous coding variants were genotyped in up to 22,546 follow-up samples. Twenty-four and 63 variants were identified in the 285 ARIC and 200 FHS participants, respectively. In both studies combined, there were 33 common and 54 rare (MAF<0.05) variants. Five non-synonymous rare variants were identified in FHS; borderline enrichment of rare variants was found in the extremes of THP (SKAT p-value = 0.08). Only V458L was associated with THP in the FHS general-population validation sample (p = 9*103^{−3}, n = 2,522), but did not show direction-consistent and significant association with eGFR in both the ARIC (n = 14,635) and FHS (n = 7,520) validation samples. Pooling all non-synonymous rare variants except V458L together showed non-significant associations with THP and eGFR in the FHS validation sample. Functional studies of V458L revealed no alternations in protein trafficking. Conclusions/Significance: Multiple novel rare variants in the UMOD region were identified, but none were consistently associated with eGFR in two independent study samples. Only V458L had modest association with THP levels in the general population and thus could not account for the observed GWAS signal

    Urinary secretion and extracellular aggregation of mutant uromodulin isoforms.

    Get PDF
    Uromodulin is exclusively expressed in the thick ascending limb and is the most abundant protein secreted in urine where it is found in high-molecular-weight polymers. Its biological functions are still elusive, but it is thought to play a protective role against urinary tract infection, calcium oxalate crystal formation, and regulation of water and salt balance in the thick ascending limb. Mutations in uromodulin are responsible for autosomal-dominant kidney diseases characterized by defective urine concentrating ability, hyperuricemia, gout, tubulointerstitial fibrosis, renal cysts, and chronic kidney disease. Previous in vitro studies found retention in the endoplasmic reticulum as a common feature of all uromodulin mutant isoforms. Both in vitro and in vivo we found that mutant isoforms partially escaped retention in the endoplasmic reticulum and reached the plasma membrane where they formed large extracellular aggregates that have a dominant-negative effect on coexpressed wild-type protein. Notably, mutant uromodulin excretion was detected in patients carrying uromodulin mutations. Thus, our results suggest that mutant uromodulin exerts a gain-of-function effect that can be exerted by both intra- and extracellular forms of the protein
    corecore