173 research outputs found
The Height of Chromospheric Loops in an Emerging Flux Region
Context. The chromospheric layer observable with the He I 10830 {\AA} triplet
is strongly warped. The analysis of the magnetic morphology of this layer
therefore requires a reliable technique to determine the height at which the He
I absorption takes place.
Aims. The He I absorption signature connecting two pores of opposite polarity
in an emerging flux region is investigated. This signature is suggestive of a
loop system connecting the two pores. We aim to show that limits can be set on
the height of this chromospheric loop system.
Methods. The increasing anisotropy in the illumination of a thin, magnetic
structure intensifies the linear polarization signal observed in the He I
triplet with height. This signal is altered by the Hanle effect. We apply an
inversion technique incorporating the joint action of the Hanle and Zeeman
effects, with the absorption layer height being one of the free parameters.
Results. The observed linear polarization signal can be explained only if the
loop apex is higher than \approx5 Mm. Best agreement with the observations is
achieved for a height of 6.3 Mm.
Conclusions. The strength of the linear polarization signal in the loop apex
is inconsistent with the assumption of a He I absorption layer at a constant
height level. The determined height supports the earlier conclusion that dark
He 10830 {\AA} filaments in emerging flux regions trace emerging loops.Comment: 7 pages, 4 figure
Comparison of the thin flux tube approximation with 3D MHD simulations
The structure and dynamics of small vertical photospheric magnetic flux
concentrations has been often treated in the framework of an approximation
based upon a low-order truncation of the Taylor expansions of all quantities in
the horizontal direction, together with the assumption of instantaneous total
pressure balance at the boundary to the non-magnetic external medium. Formally,
such an approximation is justified if the diameter of the structure (a flux
tube or a flux sheet) is small compared to all other relevant length scales
(scale height, radius of curvature, wavelength, etc.). The advent of realistic
3D radiative MHD simulations opens the possibility of checking the consistency
of the approximation with the properties of the flux concentrations that form
in the course of a simulation.
We carry out a comparative analysis between the thin flux tube/sheet models
and flux concentrations formed in a 3D radiation-MHD simulation. We compare the
distribution of the vertical and horizontal components of the magnetic field in
a 3D MHD simulation with the field distribution in the case of the thin flux
tube/sheet approximation. We also consider the total (gas plus magnetic)
pressure in the MHD simulation box. Flux concentrations with
super-equipartition fields are reasonably well reproduced by the second-order
thin flux tube/sheet approximation. The differences between approximation and
simulation are due to the asymmetry and the dynamics of the simulated
structures
Structural Invariance of Sunspot Umbrae Over the Solar Cycle: 1993-2004
Measurements of maximum magnetic flux, minimum intensity, and size are
presented for 12 967 sunspot umbrae detected on the NASA/NSO
spectromagnetograms between 1993 and 2004 to study umbral structure and
strength during the solar cycle. The umbrae are selected using an automated
thresholding technique. Measured umbral intensities are first corrected for a
confirming observation of umbral limb-darkening. Log-normal fits to the
observed size distribution confirm that the size spectrum shape does not vary
with time. The intensity-magnetic flux relationship is found to be steady over
the solar cycle. The dependence of umbral size on the magnetic flux and minimum
intensity are also independent of cycle phase and give linear and quadratic
relations, respectively. While the large sample size does show a low amplitude
oscillation in the mean minimum intensity and maximum magnetic flux correlated
with the solar cycle, this can be explained in terms of variations in the mean
umbral size. These size variations, however, are small and do not substantiate
a meaningful change in the size spectrum of the umbrae generated by the Sun.
Thus, in contrast to previous reports, the observations suggest the equilibrium
structure, as testified by the invariant size-magnetic field relationship, as
well as the mean size (i.e. strength) of sunspot umbrae do not significantly
depend on solar cycle phase.Comment: 17 pages, 6 figures. Published in Solar Physic
Models and Observations of Sunspot Penumbrae
The mysteries of sunspot penumbrae have been under an intense scrutiny for
the past 10 years. During this time, some models have been proposed and
refuted, while the surviving ones had to be modified, adapted and evolved to
explain the ever-increasing array of observational constraints. In this
contribution I will review two of the present models, emphasizing their
contributions to this field, but also pinpointing some of their inadequacies to
explain a number of recent observations at very high spatial resolution. To
help explaining these new observations I propose some modifications to each of
them. These modifications bring those two seemingly opposite models closer
together into a general picture that agrees well with recent 3D
magneto-hydrodynamic simulations.Comment: 9 pages, 1 color figure. Review talk to appear in the proceedings of
the International Workshop of 2008 Solar Total Eclipse: Solar Magnetism,
Corona and Space Weather--Chinese Space Solar Telescope Scienc
Advantages of the Ilizarov external fixation in the management of intra-articular fractures of the distal tibia
<p>Abstract</p> <p>Background</p> <p>Treatment of distal tibial intra-articular fractures is challenging due to the difficulties in achieving anatomical reduction of the articular surface and the instability which may occur due to ligamentous and soft tissue injury. The purpose of this study is to present an algorithm in the application of external fixation in the management of intra-articular fractures of the distal tibia either from axial compression or from torsional forces.</p> <p>Materials and methods</p> <p>Thirty two patients with intra-articular fractures of the distal tibia have been studied. Based on the mechanism of injury they were divided into two groups. Group I includes 17 fractures due to axial compression and group II 15 fractures due to torsional force. An Ilizarov external fixation was used in 15 patients (11 of group I and 4 of group II). In 17 cases (6 of group I and 11 of group II) a unilateral hinged external fixator was used. In 7 out of 17 fractures of group I an additional fixation of the fibula was performed.</p> <p>Results</p> <p>All fractures were healed. The mean time of removal of the external fixator was 11 weeks for group I and 10 weeks for group II. In group I, 5 patients had radiological osteoarthritic lesions (grade III and IV) but only 2 were symptomatic. Delayed union occurred in 3 patients of group I with fixed fibula. Other complications included one patient of group II with subluxation of the ankle joint after removal of the hinged external fixator, in 2 patients reduction found to be insufficient during the postoperative follow up and were revised and 6 patients had a residual pain. The range of ankle joint motion was larger in group II.</p> <p>Conclusion</p> <p>Intra-articular fractures of the distal tibia due to axial compression are usually complicated with cartilaginous problems and are requiring anatomical reduction of the articular surface. Fractures due to torsional forces are complicated with ankle instability and reduction should be augmented with ligament repair, in order to restore normal movement of talus against the mortise. Both Ilizarov and hinged external fixators are unable to restore ligamentous stability. External fixation is recommended only for fractures of the ankle joint caused by axial compression because it is biomechanically superior and has a lower complication rate.</p
Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures
Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries
Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery
Purpose
Joint fractures must be accurately reduced minimising soft tissue damages to avoid negative surgical outcomes. To this regard, we have developed the RAFS surgical system, which allows the percutaneous reduction of intra-articular fractures and provides intra-operative real-time 3D image guidance to the surgeon. Earlier experiments showed the effectiveness of the RAFS system on phantoms, but also key issues which precluded its use in a clinical application. This work proposes a redesign of the RAFS’s navigation system overcoming the earlier version’s issues, aiming to move the RAFS system into a surgical environment.
Methods
The navigation system is improved through an image registration framework allowing the intra-operative registration between pre-operative CT images and intra-operative fluoroscopic images of a fractured bone using a custom-made fiducial marker. The objective of the registration is to estimate the relative pose between a bone fragment and an orthopaedic manipulation pin inserted into it intra-operatively. The actual pose of the bone fragment can be updated in real time using an optical tracker, enabling the image guidance.
Results
Experiments on phantom and cadavers demonstrated the accuracy and reliability of the registration framework, showing a reduction accuracy (sTRE) of about 0.88 ±0.2mm
(phantom) and 1.15±0.8mm (cadavers). Four distal femur fractures were successfully reduced in cadaveric specimens using the improved navigation system and the RAFS system following the new clinical workflow (reduction error 1.2±0.3mm, 2±1∘).
Conclusion
Experiments showed the feasibility of the image registration framework. It was successfully integrated into the navigation system, allowing the use of the RAFS system in a realistic surgical application
- …