10,668 research outputs found

    Thermally-Assisted Spin-Transfer Torque Dynamics in Energy Space

    Full text link
    We consider the general Landau-Lifshitz-Gilbert theory underlying the magnetization dynamics of a macrospin magnet subject to spin-torque effects and thermal fluctuations. Thermally activated dynamical properties are analyzed by averaging the full magnetization equations over constant- energy orbits. After averaging, all the relevant dynamical scenarios are a function of the ratio between hard and easy axis anisotropies. We derive analytically the range of currents for which limit cycles exist and discuss the regimes in which the constant energy orbit averaging technique is applicable

    Thermally-Assisted Spin-Transfer Torque Magnetization Reversal of Uniaxial Nanomagnets in Energy Space

    Full text link
    The asymptotic behavior of switching time as a function of current for a uniaxial macrospin under the effects of both spin-torque and thermal noise is explored analytically by focusing on its diffusive energy space dynamics. The scaling dependence (I0I\rightarrow 0, <τexp(ξ(1I)2)<\tau\propto\exp(-\xi(1-I)^2)) is shown to confirm recent literature results. The analysis shows the mean switching time to be functionally independent of the angle between the spin current and magnet's uniaxial axes. These results have important implications for modeling the energetics of thermally assisted magnetization reversal of spin transfer magnetic random access memory bit cells.Comment: arXiv admin note: substantial text overlap with arXiv:1205.650

    Thermally-Assisted Spin-Transfer Torque Magnetization Reversal in Uniaxial Nanomagnets

    Full text link
    We simulate the stochastic Landau-Lifshitz-Gilbert (LLG) dynamics of a uniaxial nanomagnet out to sub-millisecond timescales using a graphical processing unit based micromagnetic code and determine the effect of geometrical tilts between the spin-current and uniaxial anisotropy axes on the thermally assisted reversal dynamics. The asymptotic behavior of the switching time (I0I\rightarrow 0, exp(ξ(1I)2)\propto\exp(-\xi(1-I)^2)) is approached gradually, indicating a broad crossover regime between ballistic and thermally assisted spin transfer reversal. Interestingly, the mean switching time is shown to be nearly independent of the angle between the spin current and magnet's uniaxial axes. These results have important implications for modeling the energetics of thermally assisted magnetization reversal of spin transfer magnetic random access memory bit cells.Comment: 4 pages, 2 figure

    Optical measurements of phase steps in segmented mirrors - fundamental precision limits

    Full text link
    Phase steps are an important type of wavefront aberrations generated by large telescopes with segmented mirrors. In a closed-loop correction cycle these phase steps have to be measured with the highest possible precision using natural reference stars, that is with a small number of photons. In this paper the classical Fisher information of statistics is used for calculating the Cramer-Rao bound, which determines the limit to the precision with which the height of the steps can be estimated in an unbiased fashion with a given number of photons and a given measuring device. Four types of measurement devices are discussed: a Shack-Hartmann sensor with one small cylindrical lenslet covering a sub-aperture centred over a border, a modified Mach-Zehnder interferometer, a Foucault test, and a curvature sensor. The Cramer-Rao bound is calculated for all sensors under ideal conditions, that is narrowband measurements without additional noise or disturbances apart from the photon shot noise. This limit is compared with the ultimate quantum statistical limit for the estimate of such a step which is independent of the measuring device. For the Shack-Hartmann sensor, the effects on the Cramer-Rao bound of broadband measurements, finite sampling, and disturbances such as atmospheric seeing and detector readout noise are also investigated. The methods presented here can be used to compare the precision limits of various devices for measuring phase steps and for optimising the parameters of the devices. Under ideal conditions the Shack-Hartmann and the Foucault devices nearly attain the ultimate quantum statistical limits, whereas the Mach-Zehnder and the curvature devices each require approximately twenty times as many photons in order to reach the same precision.Comment: 23 pages, 19 figures, to be submitted to Journal of Modern Optic

    Romanesque and territory. The construction materials of Sardinian medieval churches: new approaches to the valorization, conservation and restoration

    Get PDF
    This paper is intended to illustrate a multidisciplinary research project devoted to the study of the constructive materials of the Romanesque churches in Sardinia during the “Giudicati” period (11th -13th centuries). The project focuses on the relationship between a selection of monuments and their territory, both from a historical-architectural perspective and from a more modern perspective addressing future restoration works. The methodologies of the traditional art-historical research (study of bibliographic, epigraphic and archival sources, formal reading of artifacts) are flanked by new technologies: digital surveys executed with a 3D laser-scanner, analyses of the materials (stones, mortars, bricks) with different instrumental methods: X-ray fluorescence (XRF) and inductively coupled mass spectrometry (ICP-MS) for chemical composition, X-ray diffractometer (XRD) to determine the alteration phases (e.g., soluble salts), optical microscopy and electronic (SEM) to study textures, mineral assemblages and microstructures, termogravimetric/differential scanning, calorimetric analysis (TG/DTA) for the composition of the binder mortars. This multidisciplinary approach allows the achieving of important results in an archaeometric context: 1) from a historical point of view, with the possible identification of ancient traffics, trade routes, sources of raw materials, construction phases, wall textures; 2) from a conservative point of view, by studying chemical and physical weathering processes of stone materials compatible for replacement in case of future restoration works. Sardinian Romanesque architectural heritage is particularly remarkable: about 200 churches of different types and sizes, with the almost exclusive use of cut stones. Bi- or poly-chromy, deriving from the use of different building materials, characterizes many of these monuments, becoming also a vehicle for political and cultural meanings. The paper will present some case studies aimed to illustrate the progress of the project and the results achieved

    Leave-one-out prediction error of systolic arterial pressure time series under paced breathing

    Full text link
    In this paper we show that different physiological states and pathological conditions may be characterized in terms of predictability of time series signals from the underlying biological system. In particular we consider systolic arterial pressure time series from healthy subjects and Chronic Heart Failure patients, undergoing paced respiration. We model time series by the regularized least squares approach and quantify predictability by the leave-one-out error. We find that the entrainment mechanism connected to paced breath, that renders the arterial blood pressure signal more regular, thus more predictable, is less effective in patients, and this effect correlates with the seriousness of the heart failure. The leave-one-out error separates controls from patients and, when all orders of nonlinearity are taken into account, alive patients from patients for which cardiac death occurred

    Phase shifts of synchronized oscillators and the systolic/diastolic blood pressure relation

    Get PDF
    We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy subjects. We find that delays in the oscillatory components of the time series depend on the frequency bands that are considered, in particular we find a change of sign in the phase shift going from the Very Low Frequency band to the High Frequency band. This behavior should reflect a collective behavior of a system of nonlinear interacting elementary oscillators. We prove that some models describing such systems, e.g. the Winfree and the Kuramoto models offer a clue to this phenomenon. For these theoretical models there is a linear relationship between phase shifts and the difference of natural frequencies of oscillators and a change of sign in the phase shift naturally emerges.Comment: 8 figures, 9 page
    corecore