We consider the general Landau-Lifshitz-Gilbert theory underlying the
magnetization dynamics of a macrospin magnet subject to spin-torque effects and
thermal fluctuations. Thermally activated dynamical properties are analyzed by
averaging the full magnetization equations over constant- energy orbits. After
averaging, all the relevant dynamical scenarios are a function of the ratio
between hard and easy axis anisotropies. We derive analytically the range of
currents for which limit cycles exist and discuss the regimes in which the
constant energy orbit averaging technique is applicable