We simulate the stochastic Landau-Lifshitz-Gilbert (LLG) dynamics of a
uniaxial nanomagnet out to sub-millisecond timescales using a graphical
processing unit based micromagnetic code and determine the effect of
geometrical tilts between the spin-current and uniaxial anisotropy axes on the
thermally assisted reversal dynamics. The asymptotic behavior of the switching
time (I→0, ∝exp(−ξ(1−I)2)) is approached
gradually, indicating a broad crossover regime between ballistic and thermally
assisted spin transfer reversal. Interestingly, the mean switching time is
shown to be nearly independent of the angle between the spin current and
magnet's uniaxial axes. These results have important implications for modeling
the energetics of thermally assisted magnetization reversal of spin transfer
magnetic random access memory bit cells.Comment: 4 pages, 2 figure