258 research outputs found

    Precise Extraction of the Induced Polarization in the He-4(e,e(l)(p)over-right-arrow)H-3 Reaction

    Get PDF
    We measured with unprecedented precision the induced polarization P-y in He-4(e, e(l)(p) over right arrow)H-3 at Q(2) = 0.8 and 1.3 (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation

    Polarization Components in pi(0) Photoproduction at Photon Energies up to 5.6 GeV

    Get PDF
    We present new data for the polarization observables of the final state proton in the H-1((gamma) over right arrow, (p) over right arrow)pi(0) reaction. These data can be used to test predictions based on hadron helicity conservation and perturbative QCD. These data have both small statistical and systematic uncertainties and were obtained with beam energies between 1.8 and 5.6 GeV and for pi(0) scattering angles larger than 75 degrees in the center-of-mass frame. The data extend the polarization measurements database for neutral pion photoproduction up to E-gamma = 5.6 GeV. The results show a nonzero induced polarization above the resonance region. The polarization transfer components vary rapidly with the photon energy and pi(0) scattering angle in the center-of-mass frame. This indicates that hadron helicity conservation does not hold and that the perturbative QCD limit is still not reached in the energy regime of this experiment

    Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion Photoproduction from the Proton

    Get PDF
    Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of theta(p)(cm) cm = 70 degrees. The longitudinal transfer K-LL, measured to be 0.645 +/- 0.059 +/- 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is similar to 3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude

    Is the LHCb Pc(4312)+P_c(4312)^+ plausible in the GlueX γp→J/ψp\gamma p\to J/\psi p total cross sections ?

    Full text link
    New high-statistics total cross section data for γp→J/ψp\gamma p\to J/\psi p from the GLUonic EXcitation (GlueX) experiment are fitted in a search for the exotic Pc(4312)+P_c(4312)^+ state observed by the Large Hadron Collider beauty (LHCb) collaboration. The integrated luminosity of this GlueX experiment was about 320 pb−1320~\mathrm{pb^{-1}}. The fits show that destructive interference involving an SS-wave resonance and associated non-resonance background produces a sharp dip structure about 75 MeV75~\mathrm{MeV} below the LHCb mass, in the same location as a similar structure is seen in the data. Limitations of the employed model and the need for improved statistics are discussed.Comment: 4 pages, 3 figures, 2 table

    Separated Response Function Ratios in Exclusive, Forward pi(+/-) Electroproduction

    Get PDF
    The study of exclusive pi(+/-) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio R-L=sigma(pi-)(L) / sigma(pi+)(L) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of R-T=sigma(pi-)(L) / sigma(pi+)(L) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive p pi(+/-) electroproduction on the deuteron at central Q(2) values of 0.6, 1.0, 1.6 GeV2 at W=1.95 GeV, and Q(2)=2.45 GeV2 at W=2.22 GeV. Here, we present the L and T cross sections, with emphasis on R-L and R-T, and compare them with theoretical calculations. Results for the separated ratio R-L indicate dominance of the pion-pole diagram at low -t, while results for R-T are consistent with a transition between pion knockout and quark knockout mechanisms

    Separated response functions in exclusive, forward pi(+/-) electroproduction on deuterium

    Get PDF
    Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, Q(2), and at different four-momentum transfer, t, can be used to probe QCD\u27s transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in pi(-) and pi(+) electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Purpose: We perform the first complete separation of the four unpolarized electromagnetic structure functions L/T/LT/TT in forward, exclusive pi(+/-) electroproduction on deuterium above the dominant resonances. Method: Data were acquired with 2.6-5.2-GeV electron beams and the HMS + SOS spectrometers in Jefferson Lab Hall C at central Q(2) values of 0.6, 1.0, and 1.6 GeV2 at W = 1.95 GeV, and Q(2) = 2.45 GeV2 at W = 2.22 GeV. There was significant coverage in phi and is an element of, which allowed separation of sigma(L), T, LT, TT. Results: sigma(L) shows a clear signature of the pion pole, with a sharp rise at small -t. In contrast, sigma(T) is much flatter versus t. The longitudinal/transverse ratios evolve with Q(2) and t and at the highest Q(2) = 2.45 GeV2 show a slight enhancement for pi(-) production compared to pi(+). The pi(-)/pi(+) ratio for transverse photons exhibits only a small Q(2) dependence, following a nearly universal curve with t, with a steep transition to a value of about 0.25, consistent with s-channel quark knockout. The sigma(TT)/sigma(T) ratio also drops rapidly with Q(2), qualitatively consistent with s-channel helicity conservation. The pi(-)/pi(+) ratio for longitudinal photons indicates a small isoscalar contamination at W = 1.95 GeV, consistent with what was observed in our earlier determination of the pion form factor at these kinematics. Conclusions: The separated cross sections are compared to a variety of theoretical models, which generally describe sigma(L) but have varying success with sigma(T). Further theoretical input is required to provide a more profound insight into the relevant reaction mechanisms for longitudinal and transverse photons, such as whether the observed transverse ratio is indeed attributable to a transition from pion to quark knockout mechanisms and provide useful information regarding the twist-3 transversity generalized parton distribution, H-

    Final analysis of proton form factor ratio data at Q(2)=4.0, 4.8, and 5.6 GeV2

    Get PDF
    Precise measurements of the proton electromagnetic form factor ratio R = mu(p)G(E)(p)/G(M)(p) using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of R with momentum transfer Q(2) for Q(2) greater than or similar to 1 GeV2, in strong disagreement with previous extractions of R from cross-section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab\u27s Hall A measured R at four Q(2) values in the range 3.5 GeV2 \u3c = Q(2) \u3c = 5.6 GeV2. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher Q(2) motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus, and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for R, improving the consistency of the polarization transfer data in the high-Q(2) region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis

    Meson Production in p+d Reactions

    Full text link
    The production of neutral and charged pions as well as eta mesons is studied in the Delta and N* resonance region, respectively. Heavy A=3 recoils were measured with the GEM detector. The differential cross sections covering the full angular range are compared with model calculations.Comment: 4 pages, latex, 4 figures, talk presented at the XVIIth European Conference on Few-Body Problems in Physics, Evora, Portugal, September 2000; to be published in Nucl. Phys.

    Measurement of p + d -> 3He + eta in S(11) Resonance

    Full text link
    We have measured the reaction p + d -> 3He + eta at a proton beam energy of 980 MeV, which is 88.5 MeV above threshold using the new ``germanium wall'' detector system. A missing--mass resolution of the detector system of 2.6% was achieved. The angular distribution of the meson is forward peaked. We found a total cross section of (573 +- 83(stat.) +- 69(syst.))nb. The excitation function for the present reaction is described by a Breit Wigner form with parameters from photoproduction.Comment: 8 pages, 2 figures, corrected typos in heade
    • …
    corecore