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Polarization Transfer in Wide-Angle Compton Scattering and Single-Pion
Photoproduction from the Proton
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Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been
investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil
proton. Thewide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of
3.7 GeV at a proton scattering angle of θpcm ¼ 70°. The longitudinal transfer KLL, measured to be
0.645� 0.059� 0.048, where the first error is statistical and the second is systematic, has the same sign
as predicted for the reactionmechanism inwhich the photon interactswith a single quark carrying the spinof the
proton. However, the observed value is ∼3 times larger than predicted by the generalized-parton-distribution-
based calculations, which indicates a significant unknown contribution to the scattering amplitude.

DOI: 10.1103/PhysRevLett.115.152001 PACS numbers: 13.60.Fz, 14.20.Dh

Understanding the structure of hadrons in terms of QCD
is one of the fundamental goals of modern nuclear physics.
The formalism of generalized parton distributions (GPDs),
developed about 20 years ago, for the first time linked hadron
structure information accessible through inclusive reactions
such as deep inelastic scattering to information from
exclusive reactions. These GPDs, while not directly meas-
urable in experiments, provide a unified description of key

electromagnetic reactions on the nucleon [1]. Whereas deep
inelastic scattering allows investigation of the longitudinal
structure of the nucleon, exclusive reactions such as elastic
electron and photon scattering access its transverse structure.
Taken together they allowdetermination of a complete image
of the nucleon and its complex substructure [2].
Wide-angle Compton scattering (WACS) from the

nucleon with large values of s, −t, and −u compared with
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Λ2
QCD is a hard exclusive process that provides access to

information about nucleon structure that is complementary
to high Q2 elastic form factors and deeply virtual Compton
scattering. The common feature of these reactions is a large
energy scale, leading to factorization of the scattering
amplitude into a hard perturbative kernel and a factor
described by soft nonperturbative wave functions.
Various theoretical approaches have been applied to

WACS in the hard-scattering regime, and these can be
distinguished by the number of active quarks participating
in the hard subprocess, or equivalently, by the mechanism
for sharing the transferred momentum among the constitu-
ents. Two extreme pictures have been proposed. In the
perturbative QCD (pQCD) approach, three active quarks
share the transferred momentum by the exchange of two
hard gluons [3,4]. In the handbag approach, which has in
recent years become a staple in the interpretation of data
from hard exclusive reactions, only one quark, whose wave
function has sufficient high-momentum components for the
quark to absorb and reemit the photon [5–7], is assumed to
be active. In any given kinematic regime both mechanisms
will contribute, in principle, to the cross section. It is
generally believed that at sufficiently high energies the
pQCD mechanism dominates. However, in the currently
accessible experimental domain of s and t, the nature of the
reaction mechanism is not fully understood.
Three other theoretical advances based on leading-quark

dominance in WACS have been proposed in recent years.
The constituent quark model (CQM) with a handbag
diagram has proven successful in describing the WACS
process [8], as have calculations performed in an extended
Regge model [9]. More recently, the soft-collinear effective
theory (SCET) was developed for elastic electron-proton
scattering at high-momentum transfer [10]. The QCD
factorization approach formulated in the framework of
SCET allows for the development of a description of the
soft-spectator scattering contribution to the overall ampli-
tude. The two-photon exchange contributions to elastic
electron-proton scattering were shown to factorize by the
introduction of a single, universal SCET form factor which
defines the dominant soft-spectator amplitudes. As it is
argued inRef. [10], the same form factor also arises naturally
in WACS, and the most promising route for understanding
this soft spectator contribution in hard exclusive reactions
at JLab energies is the study of WACS.
One of the main predictions of the pQCD mechanism for

WACS is the constituent scaling rule [11], whereby dσ=dt
scales as s−6 at fixed θpcm. The pioneering experiment at
Cornell [12] was approximately consistent with constituent
scaling, albeit with modest statistical precision. However,
the high-precision data from JLab gave a scaling power of
s−7.5�0.2 [13]. The calculations from both the GPD-based
handbag approach and the SCET framework have repro-
duced the JLab cross section data very well. Crucially, the
extracted values of the SCET form factor do not show any

significant dependence on the value of s as required by
factorization.
The longitudinal and sideways polarization transfer

observables, KLL and KLS, respectively, are defined by

KLL ≡ dσðþ;→Þ − dσð−;→Þ
dσðþ;→Þ þ dσð−;→Þ ;

KLS ≡ dσðþ;↑Þ − dσð−;↑Þ
dσðþ;↑Þ þ dσð−;↑Þ ;

where the first sign refers to the incident photon helicity
and the arrow to the recoil proton longitudinal (→) or
sideways (↑) polarization. The polarization transfer observ-
ables were previously measured at JLab for Compton
scattering at s ¼ 6.9 and t ¼ −4.1 GeV2 in experiment
E99-114 [14], whose concept is mainly repeated here at
different kinematics. It was found that the longitudinal
component of the polarization transfer at the E99-114
kinematic point is large and positive, in agreement with
the handbag GPD and SCET predictions in spite of a
relatively low value of u ¼ −1.0 GeV2 and in unambigu-
ous disagreement with the pQCD predictions.
The measurement reported in this Letter (JLab experi-

ment E07-002) was carried out in Hall C at Jefferson Lab,
with the purpose of providing values of KLL and KLS when
all the Mandelstam variables are larger than Λ2

QCD. The
layout of the experiment is shown schematically in Fig. 1. A
longitudinally polarized, 100% duty-factor electron beam
with current up to 40 μA and energy of 4.11 GeV was
incident on a copper radiator of 1.3 mm thickness placed on
the beam line. The mixed beam of electrons and brems-
strahlung photons was incident on a 15 cm liquid H2 target,
located just downstream from the radiator, with a photon
flux of up to 1013 equivalent quanta=s. For incident photons
at an average weighted energy of 3.7 GeV, the scattered
photons were detected at a scattering angle of 25.7° in the
BigCal calorimeter, which is composed of 1744 lead-glass
bars subtending a solid angle of 34 msr with an angular
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FIG. 1 (color online). Schematic layout of the E07-002
experiment.
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resolution of 1.8mrad and relative energy resolution of 12%.
The associated recoil protonwas detected in the Hall CHigh
Momentum Spectrometer (HMS) at the corresponding
central angle of 40° and central momentum of 1.85 GeV.
The proton was detected within a solid angle of 5 msr and
momentum acceptance of �9%. The trigger was formed
from a coincidence between a signal from scintillator
counters in the HMS and a signal above a 500 MeV
threshold in the calorimeter. A magnet between the target

and the calorimeter, as shown in Fig. 1, with
R
~B × ~dl ¼

1.2 Tm deflected the elastically scattered electrons verti-
cally by ∼50 cm relative to undeflected WACS photons.
Events with a radiative photon kinematically indistinguish-
able from WACS constitute an irreducible background.
Data have been collected with the radiator present and

removed, and with different field settings of the deflection
magnet. About 7.4 C of beam charge was accumulated for
WACS production runs. The electron beam longitudinal
polarization was found to be 75.0� 1.1% using a Møller
polarimeter. During data taking, the beam polarization was
flipped at a 30 Hz rate. The bremsstrahlung photon has
99% of the initial electron polarization over the energy
range of current analysis.
Potential WACS events are selected based on the

kinematic correlation between the scattered photon and
the recoil proton. The known optical properties of the HMS
are used to reconstruct the momentum, direction, and
reaction vertex of the recoil proton, from which the
reconstructed incident photon (electron) energy (assuming
a γp and ep final state), Einc, was determined. The δx and
δy, the difference in x and y coordinates between the
expected and measured locations of the scattered photon at
the entrance of the calorimeter, were calculated. The
distributions of events in the ðδx∶δyÞ and ðEinc∶δyÞ planes
are shown in Figs. 2 and 3, respectively.
The WACS events pðγ; γ0pÞ, which are concentrated

in the peak at δx; δy ∼ 0 cm, lie on top of a continuum
background mainly related to the pðγ; π0pÞ reaction, for
which one of the photons is detected from the subsequent
decay π0 → γγ. An additional background is due to
electrons and radiative photons from elastic ep scattering.
The recoil proton polarization was measured by the focal

plane polarimeter (FPP) located in the HMS. The FPP
determines the two polarization components normal to the
momentum of the proton by measuring the azimuthal
asymmetries in the angular distribution after secondary
scattering of the proton from an analyzer for positive
and negative electron beam-helicity states. Two 60 cm
(53 g=cm2) thick blocks of CH2 analyzers were used in the
experiment. Two drift chambers at the focal plane, and a
pair of large-acceptance drift chambers placed after each
analyzer, tracked the protons before, between, and after the
analyzer blocks, effectively producing two independent
polarimeters with a combined figure of merit (a product of
efficiency and analyzing power in square) of 7 × 10−3.
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FIG. 2 (color online). Two-dimensional distribution of events in
ðδx∶δyÞ. The WACS events pðγ; γ0pÞ and the irreducible Bethe-
Heitler background pðe; γ0pÞe0 form the peak at δx; δy ∼ 0 cm,
which is selected by an elliptical cut ðδx=8Þ2 þ ðδy=4Þ2 < 1.
This region also contains the photopion events pðγ; π0pÞ—the
underlying continuum. The ep elastic events are centered at
δx ∼ 0, δy ∼ −50 cm.
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FIG. 3 (color online). Two-dimensional distribution of events
in ðEinc∶δyÞ. WACS pðγ; γ0pÞ events are concentrated around
δy ∼ 0 cm, selected through an elliptical cut in ðδx∶δyÞ, and
reconstructed Einc ∈ ½3.60; 3.98� GeV. The pðe; γ0pÞe0 events,
with a high-energy postscattering radiative photon, are at
Einc ¼ 4.1 GeV. Photopion pðγ; π0pÞ events are mainly located
at δy ∼ 0 cm and Einc < 3.6 GeV. At δy ¼ −50 cm and
Einc ¼ 4.1 GeV, elastic pðe; e0pÞ events form a peak, with a
vertical tail in δy of pðe; e0pÞγ0po with a postscattering radiative
photon, and an oblique tail of pðe; e0pÞγ0pr with a prescattering
radiative photon.
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For each analyzer, the angular distribution of the
scattered protons is given by

Nðϑ;φÞ ¼ N0ðϑÞf1þ ½AyðϑÞPFPP
t þ α� sinφ

− ½AyðϑÞPFPP
n þ β� cosφg;

where N0 is the number of protons that scatter in the
polarimeter, ϑ and φ are the polar and azimuthal scattering
angles, PFPP

n or PFPP
t is the helicity-dependent component

of the proton polarization at the FPP, Ay is the FPP
analyzing power, and α and β are helicity-independent
terms including instrumental asymmetries. Such a distri-
bution was measured for the two states of the electron beam
helicity. The difference between these two distributions,
Nþ=N0

þ − N−=N0
−, cancels the instrumental asymmetries

to first order and gives access to the helicity-dependent
transferred polarization. Performing a Fourier analysis of
the beam-helicity difference of Nðϑ;φÞ allows extraction of
the products of the proton polarization components and Ay,
shown in Fig. 4.
Determination of AyðϑÞ for each of the analyzers was

performed by measuring the longitudinal polarization of
the recoil proton from ~ep elastic scattering at approxi-
mately the same proton momentum. This analysis
also yields the ratio of the proton elastic form factors,
which was found to be μpG

p
E=G

p
M ¼ 0.744� 0.031 at

Q2 ¼ 2.25 GeV2, in excellent agreement with a fit to
known measurements [15].
Polarization components at the FPP were related to their

counterparts at the target by calculating the proton spin
precession in the HMS. This was done by using a COSY
model [16] of the HMS optics to obtain a spin transport
matrix for each proton track. The elements of this matrix

are characterized by the average spin precession angle,
which is approximately 100°. The proton spin vector was
then transformed to the proton rest frame, with the
longitudinal axis pointing in the direction of the recoil
proton in the center-of-mass frame [6]. In that frame, the
longitudinal and sideways components of the proton
polarization normalized to the photon polarization are just
the spin transfer parameters KLL and KLS, respectively.
The WACS events are selected from a small elliptical

region at the origin of the (δx∶δy) plane, as shown in Fig. 2.
For each spin component, the following deconvolution
procedure has been used to extract the final WACS recoil
polarization KWACS:

Kpeak ¼ ½Kellipse − ð1 − f1ÞKpion�=f1;
KWACS ¼ ½Kpeak − ð1 − f2ÞKepγ�=f2;

where Kellipse, Kpeak, Kpion, and Kepγ are the polarizations
related to (i) all of the events within the (δx∶δy) ellipse
shown in Fig. 2, (ii) only the events in the peak above the
continuum background, (iii) the pion photoproduction
background events, and (iv) the Bethe-Heitler background
events. The fractions for the ratio of event types are defined
as f1 ¼ Npeak=Nellipse and f2 ¼ NWACS=Npeak, respectively.
The dominant background polarization, by itself an impor-
tant physics result, Kpion, was measured by selecting events
from regions of the (δx∶δy) plane in Fig. 2 that contain
neither WACS nor ep (epγ) events, corresponding to
δy > 10 cm and −35 < δy < −10 cm. It was found that
within the statistical precision of the measurements, Kpion

was constant over broad regions of that plane. The polari-
zation of the epγ background Kepγ was determined by
selecting events in the deflected ep elastic peak region.
It was determined that within the statistical precision,
the polarization Kep was consistent with Kepγ. The results
for the longitudinal and sideways components areKepγ;LL ¼
0.4513� 0.0054 and Kepγ;LS ¼ −0.1837� 0.0054.
Systematic uncertainties arising from the methods used to
determine the background polarization observables have
been studied and included in the final results. The final
source of background which needs to be taken into account
arises as a result of the presence of accidental random events
in the final sample (< 4% of the events).
Results obtained with the two polarimeters were sta-

tistically consistent and were combined to form a weighted
mean. With the WACS region selected to obtain the best
statistical accuracy on KWACS and fits performed on the
respective distributions, we find f1 ¼ 0.405� 0.004.
The determination of the fraction f2 is a little more involved
and requires analysis of calibration data taken without
the copper radiator. By doing so, we measure the quantity
nepγ ¼ Nepγ=Nep after having imposed an optimized cut
on the incident energy to remove prevertex interactions,
which can then be used to determine the fraction
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f2 ¼ 1 − Nepγ=Npeak ¼ 1 − nepγ × Nep=Npeak for the
production data. Following this method, we find f2 ¼
0.67� 0.03. As a consistency check, this fraction was
determined using a second analysis method which involved
reconstructing the incident energy spectrum for epγ events
through a convolution of the theoretical bremsstrahlung
spectrum from the radiator with the real spectrum of
calibration events (without the radiator) for a scattered
photon detected at δy ∼ 0 cm. A third method consists of
extracting the fraction from the difference between the value
of the cross section measured in this experiment, which
includes the irreducible epγ background, and thevalue of the
WACScross section obtained from the parametrization of the
E99-114 results [13]. The results obtained for f2 using these
three methods were found to be consistent with each other.
The extracted polarization transfer observables for differ-

ent event samples are given in Table I. A comparison
between the E99-114 [14] and the present polarization
measurement results for WACS and a single-pion photo-
production is also given in Table I. The large changes of
KLL, KLS in pion production between the two data sets
indicate a complicated nonasymptotic reaction mechanism.
These results are in good agreement with previous mea-
surements [17].
The final result for WACS KLL is shown in Fig. 5 along

with the predictions of the relevant calculations. In agree-
ment with what was found in the previous JLab experiment
[14], the KLL result is inconsistent with predictions based
on the pQCD theory [4] and hence suggests that even at this
experiment’s values of s;−t;−u ¼ 7.8; 2.1; 4.0 GeV2 we
are still far from the asymptotic regime for the WACS
process. Figure 5 shows the pQCD predictions for the two
extreme choices of the distribution amplitudes, namely, the
asymptotic and COZ [19], with the first, ϕ1ðx1; x2; x3Þ ¼
120x1x2x3, for asymptotically large energy scales, and the
second having a peak in ϕ1 at x1;3 ≈ 1=2, x2 ≈ 0, to be
constrained by the QCD sum-rules-based values of its
lowest moments.

In conclusion, the polarization transfer observables KLL
and KLS have been measured for proton Compton scatter-
ing at a new kinematic point at s ¼ 7.8 GeV2 and
θpcm ¼ 70°. The final results are KLL ¼ 0.645� 0.059�
0.048 and KLS ¼ −0.089� 0.059� 0.040, where the first
uncertainty is statistical and the second is systematic. The
KLS result is in agreement within the experimental uncer-
tainties with calculations for both the leading-quark and the
pQCD approaches [4,7,8,10] and hence suggests that there
is no strong evidence for proton helicity flip in this reaction.
The value obtained for KLL is, quite unexpectedly, larger
than all the available theoretical predictions. Such a KLL
could be caused by noncollinear effects in exclusive
reactions at currently accessible energies and parton corre-
lations in the nucleon. In this respect, the KLL increase may
be related to significant roles observed in elastic electron-
nucleon scattering of both quark orbital angular momentum
and a u-d diquark correlation [20,21].
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