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Precise Extraction of the Induced Polarization in the 4Heðe; e0 ~pÞ3H Reaction
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7INFN Rome, Sanitá Group and Istituto Superiore di Sanitá, I-00161 Rome, Italy
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We measured with unprecedented precision the induced polarization Py in
4Heðe; e0 ~pÞ3H at Q2 ¼ 0:8

and 1:3 ðGeV=cÞ2. The induced polarization is indicative of reaction-mechanism effects beyond the

impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approxi-

mation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data

are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation.

DOI: 10.1103/PhysRevLett.106.052501 PACS numbers: 25.30.Fj, 21.65.�f, 25.10.+s, 27.10.+h

Why and to what extent the nucleon changes its structure
while embedded in nuclear medium has been a long-
standing question in nuclear physics, attracting experimen-
tal and theoretical attention. In this context, one of the
hotly debated topics has been the interpretation of the
quenching in the polarization-transfer double ratio,
ðP0

x=P
0
zÞ4He=ðP0

x=P
0
zÞ1H extracted from measurements of

the polarization-transfer coefficients, P0
x and P0

z, in elastic
~ep scattering and quasielastic scattering on 4He [1–4].
In elastic ~ep scattering P0

x=P
0
z is directly proportional to

the ratio of the electric and magnetic form factors of the
proton, GE=GM [5]. In Að ~e; e0 ~pÞB quasielastic scattering,
the polarization-transfer ratio is expected to be sensitive
to the form-factor ratio of the proton embedded in the
nuclear medium. The polarization double ratio is then
taken to emphasize differences between the in-medium
and free values. For a 4He nucleus this double ratio was
found to be quenched by 10% [1,4]. This quenching could
be due to conventional nuclear medium effects like nu-
cleon off shellness, meson-exchange currents, final-state
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interactions (FSI), but also to unconventional effects like
modifications of the electric and magnetic form factors of
the proton in the nuclear medium [6]. However, an inter-
pretation of a small quenching in the polarization-transfer
double ratio as evidence of unconventional nuclear effects
requires excellent control of conventional reaction
mechanisms and hence remains, to some degree, model
dependent. The induced polarization Py, experimentally

accessible along with P0
x and P0

z, is a measure of conven-
tional nuclear effects and offers vital constraints for the
interpretation of the polarization-transfer double ratio.

The polarization-transfer double ratio from Jefferson
Lab experiments E93-049 [1] and E03-104 [4] has been
successfully modeled by two competing theoretical pre-
dictions: the relativistic distorted-wave impulse approxi-
mation (RDWIA) calculation by the Madrid group [2] with
medium-modified form factors from the quark-meson cou-
pling (QMC) model [6], and the calculation of Schiavilla
et al. [3] which assumes free nucleon form factors but has
different modeling of nuclear conventional effects, in par-
ticular, the FSIs. Whether the two models give an accurate
description of Py has become the key in the interpretation

of the polarization-transfer double ratio. The large uncer-
tainties of E93-049 Py measurements precluded any defi-

nite conclusion. Experiment E03-104 provides the most
precise measurements to date of the induced polarization in
4Heðe; e0 ~pÞ3H, and this Letter presents the results.

We report measurements of the induced polarization
Py in the quasielastic reaction 4Heðe; e0 ~pÞ3H, at four-

momentum transfer Q2 of 0.8 and 1:3 ðGeV=cÞ2 and miss-
ing momentum, pm ranging from 0 to 160 MeV=c. A
longitudinally polarized electron beam with flipping polar-
ization direction and a current of 80 �A was incident on
4He and 1H targets, and the scattered electron and recoil
proton were detected in coincidence in two high-resolution
spectrometer arms. The 4He target was chosen because its
relative simplicity allows for realistic microscopic theo-
retical calculations while its high nuclear density increases
the sensitivity to nuclear medium effects. The proton arm
central momenta for the 1Hð ~e; e0 ~pÞ reaction were adjusted
in 2% increments from �8% to þ8% so that protons in
elastic ~ep scattering had a similar coverage of the focal
plane as in the 4Heð ~e; e0 ~pÞ3H reaction [4]. These ~ep mea-
surements provided a baseline for the comparison of in-
medium to free proton polarizations and were also used to
check for possible instrumental asymmetries.

The polarized recoil protons traveled through the
magnetic field of the spectrometer to the detector package
used to measure the polarizations, the focal plane polar-
imeter (FPP) [7]. The spin precession of the protons was
calculated using a well-established model of the spectrom-
eter’s magnetic field [4]. In the FPP, the polarized protons
scattered in a carbon block leading to azimuthal asymme-
tries. These asymmetries in combination with information
on the proton spin precession and the carbon analyzing

power were analyzed by means of a maximum likelihood
method to obtain the induced polarization [8].
The extraction of the induced polarization Py is compli-

cated by the presence of instrumental asymmetries. For the
particular reaction that we studied, Py was expected to be

small, <6% [1]. Thus even small instrumental asymme-
tries could constitute a significant background. The 1H data
have been used to check for the presence of instrumental
asymmetries. In the one-photon-exchange approximation
Py in 1Hðe; e0 ~pÞ is expected to be zero. The two-photon-

exchange processes could yield a nonzero but rather small
induced polarization, theoretical calculations predicting a
value below 1% [9,10] at our kinematics. When taking into
account the analyzing power and the recoil proton spin
transport, this will translate into an expectation for the
physics azimuthal asymmetries of <0:4%, making any
significant instrumental asymmetries easy to detect.
We performed an extensive study to identify and correct

for these asymmetries. The azimuthal distributions of the
polarized protons are reconstructed from the track infor-
mation provided by the FPP straw chambers located before
(front) and after (rear) the carbon analyzer [7]. We engaged
in a thorough check of the performance of the chambers,
and we found that inefficient regions and misalignments of
the front and rear chambers lead to a contamination of the
physics asymmetries. We devised a new tracking algorithm
to allow track reconstruction even in inefficient regions,
and we developed a more precise alignment procedure to
correct for misalignments. As a result, we see only small
variations, at the subpercent level, in the experimental
azimuthal asymmetries for 1Hðe; e0 ~pÞ, with few outlyers
up to 1% in the few inefficient regions and at the edges of
the FPP acceptance. On average, the experimental azimu-
thal asymmetries for 1Hðe; e0 ~pÞ are at the subpercent level.
To cancel out these residual instrumental asymmetries,

we obtain Py in 4Heðe; e0 ~pÞ3H, Py in Table I, as the

difference of Py extracted from 4He, Py(raw) in Table I,

and 1H data. Our systematic studies found the induced
polarization thus extracted to be very robust on average
and within the acceptance of the detector when binned
in various kinematic variables. We reduced the systematic
uncertainty on the Py extraction by a factor of 4 when

compared to previous, similar measurements from

TABLE I. The induced polarization Py from E03-104. Py

(raw) is the experimental value of the induced polarization in
4Heðe; e0 ~pÞ3H. Py is the difference between the experimental

values of Py in
4Heðe; e0 ~pÞ3H and 1Hðe; e0 ~pÞ, which gives, in the

absence of the induced polarization in 1H, the induced polariza-
tion in 4He. Stat and Syst represent the statistical and systematic
uncertainties, respectively.

Q2 ðGeV=cÞ2 Py (raw) Stat Py Stat Syst

0.8 �0:0366 0.0042 �0:0415 0.0050 0.0050

1.3 �0:0394 0.0039 �0:0373 0.0043 0.0058
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E93-049 [1]. Our data are used to put to stringent test
state-of-the-art theoretical calculations, and such compari-
sons are presented in what follows.

In Fig. 1 we show the induced polarization Py in
4Heðe; e0 ~pÞ3H extracted from E03-104 (upper panel) to-
gether with earlier results from E93-049 [1] (lower panel)
and theoretical calculations from the Madrid group [2]
(curves and band) which were averaged over the spec-
trometer acceptance. In the RDWIA, the nuclear current
is calculated with relativistic wave functions for the initial
bound and outgoing proton. The nuclear current operator
can be of cc1 or cc2 forms [11] depending on the pre-
scription used to enforce current conservation. The final
outgoing proton wave function is a solution of a Dirac
equation with global optical potentials to account for FSIs.
The optical potential models used are McNeil-Ray-
Wallace (MRW) [12] and Love-Franey (RLF) [13]. In

Fig. 1 the green band represents the Madrid calculation
when MRW is used, and the width of the band depends on
the form of the nuclear current operator, cc1 or cc2, with
cc1 giving a larger Py in absolute value. The blue solid and

dashed curves represent the Madrid calculation when
using the RLF optical potential and cc1 (solid line) or
cc2 (dashed line). The older E93-049 experiment [1] aver-
aged over a larger range in missing momentum than
E03-104, see Fig. 1, and Py is predicted to increase, in

absolute value, with increasing missing momentum. This
causes the apparent drop in the theory results at the kine-
matics of E93-049 when compared to those of E03-104.
The considerably reduced systematic uncertainties of
the new results make possible a clear distinction between
various theoretical prescriptions: the best description of
the data is given by RDWIA (RLF, cc1). The inclusion
of medium-modified form factors via the QMC model [6]
slightly increases Py, in absolute value, more so at large

Q2, as shown by the dash-dotted and dotted curves.
In Fig. 2 we present the distribution of the induced

polarization Py as a function of the missing momentum

pm. Our results are compared to the Madrid RDWIA
calculation [2]. Overall, there is good agreement between
data and the theoretical prediction. Both data and calcu-
lation show an increase in Py (in absolute value) with
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FIG. 1 (color online). The acceptance-averaged induced polar-
ization Py in 4Heðe; e0 ~pÞ3H as a function of Q2 from E03-104

(upper panel) and E93-049 (lower panel) [1]. The inner and outer
error bars represent the statistical and total uncertainties, respec-
tively. The green band displays the Madrid calculation [2] when
using MRW as optical potential and cc1 or cc2 for the form of
the nuclear current operator. For the solid and dashed curves
RLF was used with cc1 (solid) and cc2 (dashed). The dash-
dotted and dotted curves were obtained from the dashed and
solid ones, respectively, by including medium-modified form
factors via the QMC model [6]. Lines connect the acceptance-
averaged theory calculations.
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FIG. 2 (color online). Py in 4Heðe; e0 ~pÞ3H as a function of
missing momentum pm from E03-104 (solid circles). Also
shown are calculations from the Madrid group [2] (notations
as in Fig. 1).
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increasing pm. The calculation predicts a stronger variation
of Py in the range of pm from�0:15 to 0 GeV=c compared

to 0 to 0:15 GeV=c. Although there is some hint in the
data that supports this behavior, especially at Q2 ¼
0:8 ðGeV=cÞ2, the size of the statistical uncertainties pre-
cludes any definite conclusion.

Another state-of-the-art theoretical calculation is the
computation of Schiavilla et al. which uses variational
wave functions for the bound three- and four-nucleon
systems, nonrelativistic meson-exchange currents (2-body
currents) and free nucleon form factors. The FSIs are
treated within the optical potential framework and include
both spin-independent and spin-dependent charge-
exchange terms which play a crucial role in the prediction
of Py [3] for this calculation. The spin-independent charge-

exchange term is constrained by pþ 3H ! nþ 3He
charge-exchange cross section data while the spin-
dependent one is largely unconstrained [3].

In Fig. 3 our Py results are compared to the calculation

of Schiavilla et al. [3]. To facilitate this comparison our
data have been corrected for the spectrometer acceptance
as this theoretical calculation is only available at pm � 0.
This correction (< 20% for this experiment) was deter-
mined using the Madrid RDWIA (RLF, cc1) model be-
cause it offers a very good qualitative description of the Py

dependence on pm. The stability of the acceptance correc-
tion was studied by using other prescriptions within the
Madrid RDWIA calculation, and the variations were neg-
ligible when compared to the experimental uncertainties.
The calculation from the Madrid group is also shown at
pm � 0. The remaining small but visible variation in the
induced polarization between E93-049 and E03-104 kine-
matics is due to the higher beam energies used in E93-049.
Although the prediction of Schiavilla et al., Schiavilla
(2005) in Fig. 3, offers a good description of the

polarization-transfer double ratio [4], it overpredicts, in
absolute value, our measurements of Py, especially at

larger Q2. This evident discrepancy prompted a revision
of this calculation. The new calculation [14], Schiavilla
(2010) in Fig. 3, uses our Py results as additional con-

straints for the modeling of the charge-exchange terms.
The calculation proved insensitive to variations of the spin-
dependent charge-exchange term (especially at larger Q2),
and this remains largely unconstrained [14]. However, the
spin-independent charge-exchange contribution has been
modified to provide a good fit to our data. It remains to be
verified whether the agreement with the charge-exchange
cross section data from pþ 3H ! nþ 3He is still main-
tained. This 2010 version of the calculation is also in good
agreement with the polarization-transfer double ratio.
The role of the charge exchange in 4Heðe; e0 ~pÞ3H still

needs to be clarified. Py in Schiavilla’s 2010 calculation

[14] proves to be mostly sensitive to the charge-exchange
spin-independent term, leaving the spin-dependent one still
unconstrained; the Madrid group deems Py largely insen-

sitive to both terms within the RDWIA framework. On the
other hand, the charge-exchange cross sections as pre-
dicted by the Madrid RDWIA calculation need to be
gauged against data. Possibly, a comparison of the induced
polarization in 4Heðe; e0 ~pÞ3H and 4Heðe; e0 ~nÞ3He could
cast some light on the role of charge exchange in this
reaction.
To summarize, we measured with unprecedented preci-

sion the induced polarization Py in 4Heðe; e0 ~pÞ3H at

Q2 ¼ 0:8 and 1:3 ðGeV=cÞ2. For the first time the system-
atic uncertainties on this observable were reduced to a size
comparable to the statistical uncertainties. We compared
our results with theoretical calculations from the Madrid
group [2] and Schiavilla et al. [3,14]. The Madrid RDWIA
prediction describes well our data when RLF is used as
optical potential and cc1 as form for the nuclear current
operator. The 2005 prediction from Schiavilla et al. over-
estimates ourPy results (in absolute value) but gives a good

description of the polarization-transfer double ratio [4].
Our induced polarization data have then been used to
constrain the charge-exchange spin-independent term in
the calculation, and this 2010 version describes well both
the induced polarization and the polarization-transfer
double ratio. Our high-precision data point to the need
to carefully consider both the charge-exchange spin-
independent and spin-dependent terms in realistic calcula-
tions, to settle the extent of medium modifications in
nucleon structure.
The collaboration wishes to acknowledge the Hall A

technical staff and the Jefferson Lab Accelerator Division
for their support. This work was supported by the U.S.
Department of Energy and the U.S. National Science
Foundation. Jefferson Science Associates operates the
Thomas Jefferson National Accelerator Facility under
DOE Contract No. DE-AC05-06OR23177.
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FIG. 3 (color online). The induced polarization Py in
4Heðe; e0 ~pÞ3H as a function of Q2 extrapolated at missing
momentum pm � 0 from E03-104 (solid circles) and E93-049
(empty circles) [1]. The inner and outer error bars represent the
statistical and total uncertainties, respectively. Calculations from
the Madrid group [2] (continuous and dashed curves) and from
Schiavilla et al. [3,14] (bands) are also shown.

PRL 106, 052501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 FEBRUARY 2011

052501-4



[1] S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003).
[2] J.M. Udias et al., Phys. Rev. C 48, 2731 (1993); J.M.

Udias et al., Phys. Rev. C 51, 3246 (1995); J.M. Udias
et al., Phys. Rev. C 53, R1488 (1996); J.M. Udias et al.,
Phys. Rev. Lett. 83, 5451 (1999); J.M. Udias and J. R.
Vignote, Phys. Rev. C 62, 034302 (2000).

[3] R. Schiavilla et al., Phys. Rev. Lett. 94, 072303 (2005).
[4] M. Paolone et al., Phys. Rev. Lett. 105, 072001 (2010).
[5] A. I. Akhiezer and M. P. Rekalo, Sov. J. Part. Nucl. 4, 277

(1974).
[6] D. H. Lu et al., Phys. Lett. B 417, 217 (1998); , Phys. Rev.

C 60, 068201 (1999); M. R. Frank, B. K. Jennings, and
G.A. Miller, Phys. Rev. C 54, 920 (1996); U. T.
Yakhshiev, U-G. Meissner, and A. Wirzba, Eur. Phys. J.
A 16, 569 (2003); J. R. Smith and G.A. Miller, Phys. Rev.
C 70, 065205 (2004); T. Horikawa and W. Bentz, Nucl.

Phys. A762, 102 (2005); S. Liuti, arXiv:hep-ph/
0601125v2; V. Guzey, A.W. Thomas, and K. Tsushima,
Phys. Rev. C 79, 055205 (2009).

[7] V. Punjabi et al., Phys. Rev. C 71, 055202 (2005).
[8] D. Besset et al., Nucl. Instrum. Methods 166, 515 (1979).
[9] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev.

C 72, 034612 (2005).
[10] Y. C. Chen et al., Phys. Rev. Lett. 93, 122301 (2004); A. V.

Afanasev et al., Phys. Rev. D 72, 013008 (2005).
[11] T. DeForest, Nucl. Phys. A392, 232 (1983).
[12] J. A. McNeil, L. Ray, and S. J. Wallace, Phys. Rev. C 27,

2123 (1983).
[13] C. J. Horowitz, Phys. Rev. C 31, 1340 (1985); D. P.

Murdock and C. J. Horowitz, Phys. Rev. C 35, 1442
(1987).

[14] R. Schiavilla (private communication).

PRL 106, 052501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 FEBRUARY 2011

052501-5

http://dx.doi.org/10.1103/PhysRevLett.91.052301
http://dx.doi.org/10.1103/PhysRevC.48.2731
http://dx.doi.org/10.1103/PhysRevC.51.3246
http://dx.doi.org/10.1103/PhysRevC.53.R1488
http://dx.doi.org/10.1103/PhysRevLett.83.5451
http://dx.doi.org/10.1103/PhysRevC.62.034302
http://dx.doi.org/10.1103/PhysRevLett.94.072303
http://dx.doi.org/10.1103/PhysRevLett.105.072001
http://dx.doi.org/10.1016/S0370-2693(97)01385-3
http://dx.doi.org/10.1103/PhysRevC.60.068201
http://dx.doi.org/10.1103/PhysRevC.60.068201
http://dx.doi.org/10.1103/PhysRevC.54.920
http://dx.doi.org/10.1140/epja/i2002-10121-x
http://dx.doi.org/10.1140/epja/i2002-10121-x
http://dx.doi.org/10.1103/PhysRevC.70.065205
http://dx.doi.org/10.1103/PhysRevC.70.065205
http://dx.doi.org/10.1016/j.nuclphysa.2005.08.002
http://dx.doi.org/10.1016/j.nuclphysa.2005.08.002
http://arXiv.org/abs/hep-ph/0601125v2
http://arXiv.org/abs/hep-ph/0601125v2
http://dx.doi.org/10.1103/PhysRevC.79.055205
http://dx.doi.org/10.1103/PhysRevC.71.055202
http://dx.doi.org/10.1016/0029-554X(79)90543-3
http://dx.doi.org/10.1103/PhysRevC.72.034612
http://dx.doi.org/10.1103/PhysRevC.72.034612
http://dx.doi.org/10.1103/PhysRevLett.93.122301
http://dx.doi.org/10.1103/PhysRevD.72.013008
http://dx.doi.org/10.1016/0375-9474(83)90124-0
http://dx.doi.org/10.1103/PhysRevC.27.2123
http://dx.doi.org/10.1103/PhysRevC.27.2123
http://dx.doi.org/10.1103/PhysRevC.31.1340
http://dx.doi.org/10.1103/PhysRevC.35.1442
http://dx.doi.org/10.1103/PhysRevC.35.1442

	Precise Extraction of the Induced Polarization in the He-4(e,e(l)(p)over-right-arrow)H-3 Reaction
	Recommended Citation

	untitled

