122 research outputs found

    Active Degassing of Deeply Sourced Fluids in Central Europe: New Evidences From a Geochemical Study in Serbia

    Get PDF
    We report on the results of an extensive geochemical survey of fluids released in the Vardar zone (central-western Serbia), a mega-suture zone at the boundary between Eurasia and Africa plates. Thirty-one bubbling gas samples are investigated for their chemical and isotopic compositions (He, C, Ar) and cluster into three distinct groups (CO2-dominated, N2-dominated, and CH4-dominated) based on the dominant gas species. The measured He isotope ratios range from 0.08 to 1.19 Ra (where Ra is the atmospheric ratio), and reveal for the first time the presence of a minor (<20%) but detectable regional mantle-derived component in Serbia. ÎŽ13C values range from −20.2‰ to −0.1‰ (versus PDB), with the more negative compositions observed in N2-dominated samples. The carbon-helium relationship indicates that these negative ÎŽ13C compositions could be due to isotopic fractionation processes during CO2 dissolution into groundwater. In contrast, CO2-rich samples reflect mixing between crustal and mantle-derived CO2. Our estimated mantle-derived He flux (9.0 Ă— 109 atoms m−2 s−1) is up to 2 orders of magnitude higher than the typical fluxes in stable continental areas, suggesting a structural/tectonic setting favoring the migration of deep-mantle fluids through the crust

    Quantum Hall Effects in Graphene-Based Two-Dimensional Electron Systems

    Full text link
    In this article we review the quantum Hall physics of graphene based two-dimensional electron systems, with a special focus on recent experimental and theoretical developments. We explain why graphene and bilayer graphene can be viewed respectively as J=1 and J=2 chiral two-dimensional electron gases (C2DEGs), and why this property frames their quantum Hall physics. The current status of experimental and theoretical work on the role of electron-electron interactions is reviewed at length with an emphasis on unresolved issues in the field, including assessing the role of disorder in current experimental results. Special attention is given to the interesting low magnetic field limit and to the relationship between quantum Hall effects and the spontaneous anomalous Hall effects that might occur in bilayer graphene systems in the absence of a magnetic field

    Spin and valley quantum Hall ferromagnetism in graphene

    Full text link
    In a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At partial filling, exchange interactions can spontaneously break this symmetry, manifesting as additional integer quantum Hall plateaus outside the normal sequence. Here we report the observation of a large number of these quantum Hall isospin ferromagnetic (QHIFM) states, which we classify according to their real spin structure using temperature-dependent tilted field magnetotransport. The large measured activation gaps confirm the Coulomb origin of the broken symmetry states, but the order is strongly dependent on LL index. In the high energy LLs, the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets with Skyrmionic excitations at half filling, whereas in the `relativistic' zero energy LL, lattice scale anisotropies drive the system to a spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed

    Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels

    Get PDF
    Interacting electrons in flat bands give rise to a variety of quantum phases. One fundamental aspect of such states is the ordering of the various flavours -such as spin or valley - that the electrons can undergo and the excitation spectrum of the broken symmetry states that they form. These properties cannot be probed directly with electrical transport measurements. The zeroth Landau level of monolayer graphene with four-fold spin-valley degeneracy is a model system for such investigations, but the nature of its broken symmetry states -particularly at partial fillings - is still not understood. Here we demonstrate a non-invasive spectroscopic technique with a scanning tunneling microscope and use it to perform measurements of the valley polarization of the electronic wave functions and their excitation spectrum in the partially filled zeroth Landau level of graphene. We can extract information such as the strength of Haldane pseudopotentials that characterize the repulsive interactions underlying the fractional quantum states. Our experiments also demonstrate that fractional quantum Hall phases are built upon broken symmetry states that persist at partial filling. Our experimental approach quantifies the valley phase diagram of the partially filled Landau level as a model flat band platform which is applicable to other graphene-based electronic systems

    Broken symmetries and excitation spectra of interacting electrons in partially filled Landau levels

    Get PDF
    Interacting electrons in flat bands give rise to a variety of quantum phases. One fundamental aspect of such states is the ordering of the various flavours—such as spin or valley—that the electrons can possess and the excitation spectrum of the broken-symmetry states that they form. These properties cannot be probed directly with electrical transport measurements. The zeroth Landau level of monolayer graphene with fourfold spin–valley degeneracy is a model system for such investigations, but the nature of its broken-symmetry states—particularly at partial fillings—is still not understood. Here we demonstrate a non-invasive spectroscopic technique with a scanning tunnelling microscope and use it to perform measurements of the valley polarization of the electronic wavefunctions and their excitation spectrum in the partially filled zeroth Landau level of graphene. We can extract information such as the strength of the Haldane pseudopotentials that characterize the repulsive interactions underlying the fractional quantum states. Our experiments also demonstrate that fractional quantum Hall phases are built upon broken-symmetry states that persist at partial filling. Our experimental approach quantifies the valley phase diagram of the partially filled Landau level as a model flat-band platform, which is applicable to other graphene-based electronic systems

    Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet

    Get PDF
    The interaction between electrons in graphene under high magnetic fields drives the formation of a rich set of quantum Hall ferromagnetic (QHFM) phases with broken spin or valley symmetry. Visualizing atomic-scale electronic wave functions with scanning tunneling spectroscopy (STS), we resolved microscopic signatures of valley ordering in QHFM phases and spectral features of fractional quantum Hall phases of graphene. At charge neutrality, we observed a field-tuned continuous quantum phase transition from a valley-polarized state to an intervalley coherent state, with a Kekulé distortion of its electronic density. Mapping the valley texture extracted from STS measurements of the Kekulé phase, we could visualize valley skyrmion excitations localized near charged defects. Our techniques can be applied to examine valley-ordered phases and their topological excitations in a wide range of materials

    Profiling of microorganism-binding serum antibody specificities in professional athletes

    Get PDF
    The goal of this work was to elucidate similarities between microorganisms from the perspective of the humoral immune system reactivity in professional athletes. The reactivity of serum IgG of 14 young, individuals was analyzed to 23 selected microorganisms as antigens by use of the in house ELISA. Serum IgM and IgA reactivity was also analyzed and a control group of sex and age matched individuals was used for comparison. The obtained absorbance levels were used as a string of values to correlate the reactivity to different microorganisms. IgM was found to be the most cross reactive antibody class, Pearson’s r = 0.7–0.92, for very distant bacterial species such as Lactobacillus and E. coli.High correlation in IgG levels was found for Gammaproteobacteria and LPS (from E. coli) (r = 0.77 for LPS vs. P. aeruginosa to r = 0.98 for LPS vs. E.coli), whereas this correlation was lower in the control group (r = 0.49 for LPS vs. P. aeruginosa to r = 0.66 for LPS vs. E.coli). The correlation was also analyzed between total IgG and IgG subclasses specific for the same microorganism, and IgG2 was identified as the main subclass recognising different microorganisms, as well as recognising LPS. Upon correlation of IgG with IgA for the same microorganism absence of or negative correlation was found between bacteria-specific IgA and IgG in case of Lactobacillus and Staphylococcusgeni, whereas correlation was absent or positive for Candida albicans, Enterococcusfaecalis,Streptococcus species tested in professional athletes. Opposite results were obtained for the control group. Outlined here is a simple experimental procedure and data analysis which yields functional significance and which can be used for determining the similarities between microorganisms from the aspect of the humoral immune system, for determining the main IgG subclass involved in an immune response as well as for the analysis of different target populations

    Understanding the Effects of Training on Underwater Undulatory Swimming Performance and Kinematics

    Get PDF
    In swimming, the underwater phase after the start and turn comprises gliding and dolphin kicking, with the latter also known as underwater undulatory swimming (UUS). Swimming performance is highly dependent on the underwater phase; therefore, understanding the training effects in UUS and underwater gliding can be critical for swimmers and coaches. Further, the development of technique in young swimmers can lead to exponential benefits in an athlete’s career. This study aimed to evaluate the effects of a training protocol on UUS and underwater gliding performance and kinematics in young swimmers. Seventeen age group swimmers (boys = 10, girls = 7) performed maximal UUS and underwater gliding efforts before and after a seven-week training protocol. Time to reach 10 m; intra-cyclic mean, peak, and minimum velocities; and gliding performance improved significantly after the training protocol. The UUS performance improvement was mostly produced by an improvement of the upbeat execution, together with a likely reduction of swimmers’ hydrodynamic drag. Despite the changes in UUS and gliding, performance was also likely influenced by growth. The findings from this study highlight kinematic variables that can be used to understand and quantify changes in UUS and gliding performance

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Senda Darwin Biological Station: Long-term ecological research at the interface between science and society

    Get PDF
    IndexaciĂłn: Web of Science; Scielo.La EstaciĂłn BiolĂłgica Senda Darwin (EBSD) constituye un centro de investigaciĂłn inmerso en el paisaje rural del norte de la Isla de ChiloĂ© (42Âș S), donde fragmentos del bosque siempreverde original coexisten con praderas de uso ganadero, turberas de Sphagnum, matorrales sucesionales, plantaciones de Eucalyptus y otras formaciones de origen antropogĂ©nico. Desde 1994 hemos realizado estudios de largo plazo centrados en algunas especies de plantas (e.g., Pilgerodendron uviferum D. Don) y animales (e.g., Aphrastura spinicauda Gmelin, Dromiciops gliroides [Thomas]) catalogados como amenazados o escasamente conocidos y en ecosistemas nativos de importancia regional y global (e.g., turberas de Sphagnum, bosque Valdiviano y NordpatagĂłnico). Las investigaciones han considerado las respuestas de las especies y de los ecosistemas frente al cambio antropogĂ©nico del paisaje y cambio climĂĄtico, asĂ­ como los efectos de diferentes formas de manejo. Este escenario es semejante al de otras regiones de Chile y LatinoamĂ©rica lo que da generalidad a nuestros resultados y modelos. En este perĂ­odo, investigadores asociados a la EBSD han producido mĂĄs de un centenar de publicaciones en revistas nacionales e internacionales y 30 tesis de pre y postgrado. Entendiendo el papel clave de los seres humanos en los procesos ecolĂłgicos de la zona rural, la EBSD ha desarrollado un programa de educaciĂłn ecolĂłgica y vinculaciĂłn del avance cientĂ­fico con la sociedad local y nacional. La integraciĂłn de la EBSD a la naciente red de Sitios de Estudios Socio-EcolĂłgicos de Largo Plazo en Chile consolidarĂĄ y fortalecerĂĄ la investigaciĂłn bĂĄsica y aplicada que realizamos para proyectarla hacia la siguiente dĂ©cada.Senda Darwin Biological Station (SDBS) is a field research center immersed in the rural landscape of northern ChiloĂ© island (42Âș S), where remnant patches of the original evergreen forests coexist with open pastures, secondary successional shrublands, Sphagnum bogs, Eucalyptus plantations and other anthropogenic cover types, constituting an agricultural frontier similar to other regions in Chile and Latin America. Since 1994, we have conducted long-term research on selected species of plants (e.g., Pilgerodendron uviferum) and animals (e.g., Aphrastura spinicauda, Dromiciops glirioides) that are considered threatened, poorly known or important for their ecological functions in local ecosystems, and on ecosystems of regional and global relevance (e.g., Sphagnum bogs, North Patagonian and Valdivian rain forests). Research has assessed the responses of species and ecosystems to anthropogenic land-use change, climate change, and the impact of management. During this period, more than 100 scientific publications in national and international journals, and 30 theses (graduate and undergraduate) have been produced by scientists and students associated with SDBS. Because of our understanding of the key role that humans play in ecological processes at this agricultural frontier, since the establishment of SDBS we have been committed to creative research on the communication of science to society and ecological education. The integration of SDBS to the nascent Chilean network of long-term socio-ecological research will consolidate and strengthen basic and applied research to project our work into the next decade.http://ref.scielo.org/vbm4r
    • 

    corecore