104 research outputs found

    Interaction point feedback design and integrated simulations to stabilize the CLIC final focus

    Get PDF
    International audienceThe Compact Linear Collider (CLIC) accelerator has strong precision requirements on offset position between the beams. The beam which is sensitive to ground motion needs to be stabilized to unprecedented requirements. Different Beam Based Feedback (BBF) algorithms such as Orbit Feedback (OFB) and Beam-Beam Offset Feedback (BBOF) have been designed. This paper focuses on the BBOF control which could be added to the CLIC baseline. It has been tested for different ground motion models in the presence of noises or disturbances and uses digital linear control with or without an adaptive loop. The simulations demonstrate that it is possible to achieve the required performances and quantify the maximum allowed noise level. This amount of admitted noises and disturbances is given in terms of an equivalent disturbance on the position of the magnet that controls the beam offset. Due to the limited sampling frequency of the process, the control loop is in a very small bandwidth. The study shows that these disturbances have to be lowered by other means in the higher frequency range

    Transport and cooling of singly-charged noble gas ion beams

    Get PDF
    The transport and cooling of noble gas singly-charged ion beams by means of a Radio Frequency Quadrupole Cooler Buncher (RFQCB) have been studied at the LIMBE low energy beam line of the GANIL facility. Ions as light as 4He+^{4}He^+ have been cooled and stored before their extraction in bunches using H2H_2 as buffer gas. Bunches characteristics have been studied as a function of the parameters of the device. Sizeable transmissions of up to 10 % have been obtained. A detailed study of the lifetime of ions inside the buncher has been performed giving an estimate of the charge exchange cross-section. Results of a microscopic Monte-Carlo transport code show reasonable agreement with experimental data.Comment: 13 figure

    MONOBOB II : Latest results of monocharged ions source for SPIRAL2 project

    Get PDF
    Original publication available at http://www.jacow.orgInternational audienceAmong the sources which can be installed in the radioactive ion production module of SPIRAL II, a singly-charged ECRIS has been chosen to produce ions from gaseous elements. Its characterization is under way on a test bench at GANIL. Extraction, transport and response time results are presented

    Production of multi-charged phosphorus ions with ecris 'SUPERSHyPIE' at GANIL

    Get PDF
    The Ganil's Ion Production Group tested the source SUPERSHyPIE123 for theproduction of phosphorus n+ ion beams. The SUPERSHyPIE ecris is used for many testsof multi-charged ion production and supply ion beams for LIMBE4 (low energie beamline). This ion source works with a 14.5ghz RF power injected by a circular waveguide inthe axis of the sourc

    Visible light spectrometry measurements for studying an ECRIS plasma and especially applied to the MONO1001 ion source

    Get PDF
    International audienceThe cylindrical geometry of the magnetic confinement of the MONO1001 ECR ion sourcemade in GANIL1, allows us to measure radial characteristics of the working ECR plasmawith Helium gas. The physical and the geometrical characteristics of the resonance surfaceinside the working ECR source have been quantified with the help of a visible lightspectrometer. Hence, we have deduced a shape of the ECRIS resonance surface whichcorresponds closely to our magnetic calculations

    MONO 1001

    Get PDF
    La source d’ions monochargĂ©s MONO 1001 en dĂ©veloppement au GANIL, est de type ECR etfonctionne Ă  2.45ghz.La source MONO1001 a Ă©tĂ© testĂ©e avec les Ă©lĂ©ments suivants: HĂ©lium, Argon, NĂ©on, krypton,xĂ©non, hydrogĂšne, fer (mĂ©thode MIVOC), calcium, erbium, plomb et fullerene (Ă  partir d’une sourced’évaporation), soufre (Ă  partir de SO2 ou SF6)

    METALLIC ION DEVELOPMENTS AT GANIL

    Get PDF
    Radioactive ion beams (RIB) are routinely produced at GANIL by fragmentation of the projectile. A possible way to improve the RIB intensity is to increase the primary beam intensity impinging the target. Although high intensities can be obtained with an ECR ion source for gaseous elements, it is more difficult for metallic elements due to the poor ionization efficiency of the source. This report deals with metallic ion beam production at high intensity. Experimental results for Ca, Ni and Fe are presented. The oven and the MIVOC methods are compared
    • 

    corecore