

MONO 1001

J.Y. Pacquet, R. Leroy, C. Barué, C. Canet, M. Dubois, M. Dupuis, J.L. Flambard, G. Gaubert, P. Jardin, S. Kantas, et al.

► To cite this version:

J.Y. Pacquet, R. Leroy, C. Barué, C. Canet, M. Dubois, et al.. MONO 1001. [Research Report] GANIL. 2002. <in2p3-00012520>

HAL Id: in2p3-00012520 http://hal.in2p3.fr/in2p3-00012520

Submitted on 10 Feb 2003 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

G P I / GANIL

Décembre 2002

<u>MONO 1001</u>

J-Y. Pacquet, R. Leroy, C. Barué, C. Canet, M. Dubois, M. Dupuis, J-L. Flambard, G. Gaubert, P. Jardin, S. Kantas^{*}, N. Lecesne, P. Lehérissier, F. Lemagnen, L. Maunoury^{**}, F. Pellemoine, M.G. Saint-Laurent, O. Tuske and A.C.C. Villari

GANIL, B.P. 5027, 14076 Caen Cedex 05, France * PANTECHNIK, 12, rue Alfred Kastler, 14000 Caen, France ** CIRIL, B.P. 5133, 14070 Caen Cedex 05, France

INTRODUCTION :

La source d'ions monochargés MONO 1001 en développement au GANIL, est de type ECR et fonctionne à 2.45ghz.

La source MONO1001 a été testée avec les éléments suivants: Hélium, Argon, Néon, krypton, xénon, hydrogène, fer (méthode MIVOC), calcium, erbium, plomb et fullerene (à partir d'une source d'évaporation), soufre (à partir de SO2 ou SF6).

DESCRIPTION :

Le champ magnétique nécessaire à son fonctionnement est obtenu avec deux couronnes constituées d'aimants permanents pesant 11kg chacune. Ces deux couronnes sont distantes de 80mm et leur rayon intérieur est de 50mm. Ce système permet de réaliser un confinement magnétique à symétrie de révolution axiale avec un module de champ pour la dernière surface fermée qui atteint 2300 gauss(*).

La puissance maximum de l'émetteur HF utilisé est de 200W. L'onde HF est transportée par un câble coaxial et injectée dans la source par l'intermédiaire d'un passage coaxial étanche. Le couplage de la HF avec le plasma est assuré par une transition coaxiale-guide d'onde sans dispositif d' accord.

La chambre à vide de la source comporte un circuit de refroidissement et peut être équipée de 5 brides permettant l'injection de gaz, la mise en place de sources d'évaporation, le couplage à un système de pompage, de diagnostiques, etc..

Pour une tension d'extraction de 15kV, l'émittance des faisceaux d'ions obtenus avec la source MONO 1000 est d'environ 30 mm mmrad pour un diamètre du trou d'extraction de l'électrode plasma de 7mm. La figure d'émittance respecte la symétrie cylindrique de la structure magnétique.

* J-Y. Pacquet, R Leroy, US Patent N°.6.194.836 (février 2001)

RESULTATS

Tableau de résultats obtenus avec MONO1001 (les chiffres concernant les efficacités sont approximatifs).

• 1			1
10n l+	intensité sur cf μA (corr du T)	% efficacité pour le1+ et (totale)	production
Н	400	30 (60)	gaz H ₂
³ He	1700	20	gaz ³ He
⁴ He	1500	20	gaz ⁴He
F	100	15	gaz SF ₆
Ne	700	90	gaz Ne
S	120	40 (90)	$gaz SO_2 ou SF_6$
Ar	500	90	gaz Ar
Ca	6	1	four Ca
Cr	2	0.16	four Cr
Fe	25		gaz ferrocene
Kr	120	90	gaz Kr
Xe		60 (90)	gaz Xe
Er	0.013 (0.180)	0.2.(0.4)	four Er
Pb	1.2 (6)	0.1 (0.15)	four Pb
C ₆₀	0.023 (0.500)	0.2	four C ₆₀

Faisceau d'ions obtenu à partir de fullerene (C_{60})

Pour cette expérience, le carbone est chauffé à environ 460°C à l'aide d'un micro four disposé à proximité du plasma. La rigidité magnétique de la ligne de transport du faisceau contraint à réduire la tension d'extraction de la source à 700V, ce qui amène l'efficacité de transport à environ 4%

Soufre et efficacité d'ionisation du soufre

Les résultats figurants dans les tableaux ci-après ont été obtenus à partir de l'injection de gaz SO_2 et de gaz SF_6 . L'efficacité d'ionisation totale sur le soufre (soufre + molécules) est de 95%.

Spectre d'ions obtenu avec la molécule SO2

Ions moléculaires SF_i⁺

Des faisceaux d'ions moléculaires ont été obtenus à partir de l'injection du gaz SF_6 . Pour produire des composés de type SF_i^+ la puissance de l'onde Hyperfréquence nécessaire est de quelques watts.

Avec ces résultats, une première observation que nous pouvons faire est la faible efficacité sur les condensables Ca, Cr, Er, Pb et C_{60} . Ce fait s'explique par une densité électronique faible due à la fréquence de l'onde injectée (2.45ghz) et donc une probabilité d'ionisation limitée. L'efficacité en Ca légèrement supérieure aux autres est certainement due à la position du four disposé axialement pour ce test, la longueur de plasma traversée est alors trois fois plus importante.

Une deuxième observation nous fait apparaître une bonne efficacité sur le souffre. L'explication se trouve peut être dans le fait que pour arriver au S⁺ les étapes successives sont, soit à l'état gaz, soit ion. Ceci laisse penser qu'une particule ionisée ne repasse plus par l'état de neutre, en effet si tel était le cas, nous devrions avoir des efficacités comparables à celle citées précédemment c.à.d. de quelques pour mille.

L'efficacité d'ionisation relativement faible sur l'hélium est probablement due à son énergie d'ionisation qui est trop élevée pour ce type de source. Pour les autres gaz, d'une part, la population électronique concernée (énergie plus faible) est plus importante et d'autre part, la faible conductance entre la chambre à plasma et le système de pompage (diamètre 6mm) permet un temps de présence dans la chambre à plasma suffisamment grand pour obtenir une grande probabilité d'ionisation.

H^+ Phf: 150W gaz H_2

⁴He

 S^+ gaz SO_2

Ca (micro-four)

Cr (Phf: 5W)

Cr (Phf: 65W)

Fer gaz: ferrocene

Kr

Er

 $C_{60} + O_2$

Emittance d'un faisceau d'helium

Mesure de la densité de neutre H* et He* au travers d'un hublot disposé latéralement(*) (voir photos)

* O. Tuske, L. Maunoury, J-Y. Pacquet, GANIL R0206

Electrode plasma

Micro-four et container

Photos du plasma dans la chambre

Sas d'introduction pour le micro-four

Injection HF (transition coaxiale/guide d'onde)

