722 research outputs found

    The VLT-FLAMES Tarantula Survey XXI. Stellar spin rates of O-type spectroscopic binaries

    Full text link
    The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (\vrot) for components of 114 spectroscopic binaries in 30 Doradus. The \vrot\ values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. \vrot\ calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall \vrot\ distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at \vrot < 200 kms) and a shoulder at intermediate velocities (200 < \vrot < 300 kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at \vrot \sim100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the \vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.Comment: 16 pages, 16 figures, paper accepted in Astronomy & Astrophysic

    The VLT-FLAMES Tarantula Survey X: Evidence for a bimodal distribution of rotational velocities for the single early B-type stars

    Full text link
    Aims: Projected rotational velocities (\vsini) have been estimated for 334 targets in the VLT-FLAMES Tarantula survey that do not manifest significant radial velocity variations and are not supergiants. They have spectral types from approximately O9.5 to B3. The estimates have been analysed to infer the underlying rotational velocity distribution, which is critical for understanding the evolution of massive stars. Methods: Projected rotational velocities were deduced from the Fourier transforms of spectral lines, with upper limits also being obtained from profile fitting. For the narrower lined stars, metal and non-diffuse helium lines were adopted, and for the broader lined stars, both non-diffuse and diffuse helium lines; the estimates obtained using the different sets of lines are in good agreement. The uncertainty in the mean estimates is typically 4% for most targets. The iterative deconvolution procedure of Lucy has been used to deduce the probability density distribution of the rotational velocities. Results: Projected rotational velocities range up to approximately 450 \kms and show a bi-modal structure. This is also present in the inferred rotational velocity distribution with 25% of the sample having 00\leq\ve\leq100\,\kms and the high velocity component having \ve250\sim 250\,\kms. There is no evidence from the spatial and radial velocity distributions of the two components that they represent either field and cluster populations or different episodes of star formation. Be-type stars have also been identified. Conclusions: The bi-modal rotational velocity distribution in our sample resembles that found for late-B and early-A type stars. While magnetic braking appears to be a possible mechanism for producing the low-velocity component, we can not rule out alternative explanations.Comment: to be publisged in A&

    Clinical effectiveness of unilateral deep brain stimulation in Tourette syndrome

    Get PDF
    Dysfunctional basal ganglia loops are thought to underlie the clinical picture of Tourette syndrome (TS). By altering dopaminergic activity in the affected neural structures, bilateral deep brain stimulation is assumed to have a modulatory effect on dopamine transmission resulting in an amelioration of tics. While the majority of published case reports deals with the application of bilateral stimulation, the present study aims at informing about the high effectiveness of unilateral stimulation of pallidal and nigral thalamic territories in TS. Potential implications and gains of the unilateral approach are discussed

    Rotational properties of the O-type star population in the Tarantula region

    Full text link
    The 30 Doradus (30\,Dor) region in the Large Magellanic Cloud (also known as the Tarantula Nebula) is the nearest massive starburst region, containing the richest sample of massive stars in the Local Group. It is the best possible laboratory to investigate aspects of the formation and evolution of massive stars. Here, we focus on rotation which is a key parameter in the evolution of these objects. We establish the projected rotational velocity, vesiniv_{e}\sin i, distribution of an unprecedented sample of 216 radial velocity constant (ΔRV20kms1\rm{\Delta RV\, \leq\, 20 \,km s^{-1}}) O-type stars in 30\,Dor observed in the framework of the VLT-FLAMES Tarantula Survey (VFTS). The distribution of vesiniv_{e}\sin i shows a two-component structure: a peak around 80 kms1\rm{km s^{-1}} and a high-velocity tail extending up to \sim600 kms1\rm{km s^{-1}}. Around 75% of the sample has 0 vesini\leq\, v_{e}\sin i \leq 200 kms1\rm{km s^{-1}} with the other 25% distributed in the high-velocity tail. The presence of the low-velocity peak is consistent with that found in other studies of late-O and early-B stars. The high-velocity tail is compatible with expectations from binary interaction synthesis models and may be predominantly populated by post-binary interaction, spun-up, objects and mergers. This may have important implications for the nature of progenitors of long-duration gamma ray bursts.Comment: 4 pages, 1 figure. Conference proceedings article: Massive stars: from alpha to Omega, 10-14 June 2013, Rhodes, Greec

    Rotational velocities of single and binary O-type stars in the Tarantula Nebula

    Full text link
    Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, vesiniv_e\sin i, of \sim330 O-type objects, i.e. \sim210 spectroscopic single stars and \sim110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30\,Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the vesiniv_e\sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100\,kms1\rm{km s^{-1}}. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300\,kms1\rm{km s^{-1}}, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part -- and could potentially be completely due -- to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.Comment: 6 pages, 3 figures, Proceedings IAU Symposium No. 307, 2014, 'New windows on massive stars: asteroseismology, interferometry, and spectropolarimetry

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Quantum key distribution and 1 Gbit/s data encryption over a single fibre

    Full text link
    We perform quantum key distribution (QKD) in the presence of 4 classical channels in a C-band dense wavelength division multiplexing (DWDM) configuration using a commercial QKD system. The classical channels are used for key distillation and 1 Gbps encrypted communication, rendering the entire system independent from any other communication channel than a single dedicated fibre. We successfully distil secret keys over fibre spans of up to 50 km. The separation between quantum channel and nearest classical channel is only 200 GHz, while the classical channels are all separated by 100 GHz. In addition to that we discuss possible improvements and alternative configurations, for instance whether it is advantageous to choose the quantum channel at 1310 nm or to opt for a pure C-band configuration.Comment: 9 pages, 7 figure

    Managing the Socially Marginalized: Attitudes Towards Welfare, Punishment and Race

    Get PDF
    Welfare and incarceration policies have converged to form a system of governance over socially marginalized groups, particularly racial minorities. In both of these policy areas, rehabilitative and social support objectives have been replaced with a more punitive and restrictive system. The authors examine the convergence in individual-level attitudes concerning welfare and criminal punishment, using national survey data. The authors\u27 analysis indicates a statistically significant relationship between punitive attitudes toward welfare and punishment. Furthermore, accounting for the respondents\u27 racial attitudes explains the bivariate relationship between welfare and punishment. Thus, racial attitudes seemingly link support for punitive approaches to opposition to welfare expenditures. The authors discuss the implications of this study for welfare and crime control policies by way of the conclusion

    The Tarantula Massive Binary Monitoring: I. Observational campaign and OB-type spectroscopic binaries

    Get PDF
    © ESO, 2017.Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims. The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods. In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results. Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions. Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z ~ 1 to 2 which are estimated to have Z 0.5 Z

    The Updated Zwicky Catalog (UZC)

    Get PDF
    The Zwicky Catalog of galaxies (ZC), with m_Zw<=15.5mag, has been the basis for the Center for Astrophysics (CfA) redshift surveys. To date, analyses of the ZC and redshift surveys based on it have relied on heterogeneous sets of galaxy coordinates and redshifts. Here we correct some of the inadequacies of previous catalogs by providing: (1) coordinates with <~2 arcsec errors for all of the Nuzc catalog galaxies, (2) homogeneously estimated redshifts for the majority (98%) of the data taken at the CfA (14,632 spectra), and (3) an estimate of the remaining "blunder" rate for both the CfA redshifts and for those compiled from the literature. For the reanalyzed CfA data we include a calibrated, uniformly determined error and an indication of the presence of emission lines in each spectrum. We provide redshifts for 7,257 galaxies in the CfA2 redshift survey not previously published; for another 5,625 CfA redshifts we list the remeasured or uniformly re-reduced value. Among our new measurements, Nmul are members of UZC "multiplets" associated with the original Zwicky catalog position in the coordinate range where the catalog is 98% complete. These multiplets provide new candidates for examination of tidal interactions among galaxies. All of the new redshifts correspond to UZC galaxies with properties recorded in the CfA redshift compilation known as ZCAT. About 1,000 of our new measurements were motivated either by inadequate signal-to-noise in the original spectrum or by an ambiguous identification of the galaxy associated with a ZCAT redshift. The redshift catalog we include here is ~96% complete to m_Zw<=15.5, and ~98% complete (12,925 galaxies out of a total of 13,150) for the RA(1950) ranges [20h--4h] and [8h--17h] and DEC(1950) range [-2.5d--50d]. (abridged)Comment: 34 pp, 7 figs, PASP 1999, 111, 43
    corecore