146 research outputs found

    Designing a Thermal Energy Storage Program for Electric Utilities

    Get PDF
    Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper describes a methodology to design a successful thermal energy storage program for electric utilities. The design process is addressed beginning with the market research phase. The research includes information obtained from utilities having successful thermal storage programs. In addition, information is gathered from interviews with local architects and engineers, air conditioning contractors and potential thermal energy storage customers. From this information a marketing plan is developed that addresses the target market, market penetration, promotional methods, incentive types and levels, internal and external training requirements and optimal organizational structure. The marketing plan also includes various rate structures, program procedures and evaluation techniques. In addition to the marketing plan, several case histories are addressed

    Terahertz sampling rates with photonic time-stretch for electron beam diagnostics

    Get PDF
    To understand the underlying complex beam dynamics in electron storage rings often large numbers of single-shot measurements must be acquired continuously over a long period of time with extremely high temporal resolution. Photonic time-stretch is a measurement method that is able to overcome speed limitations of conventional digitizers and enable continuous ultra-fast single-shot terahertz spectroscopy with rates of trillions of consecutive frames. In this contribution, a novel ultra-fast data sampling system based on photonic time-stretch is presented and the performance is discussed. THERESA (TeraHErtz REadout SAmpling) is a data acquisition system based on the recent ZYNQ-RFSoC family. THERESA has been developed with an analog bandwidth of up to 20 GHz and a sampling rate of up to 90 GS s−1. When combined with the photonic time-stretch setup, the system will be able to sample a THz signal with an unprecedented frame rate of 8 Tf s−1. Continuous acquisition for long observation times will open up new possibilities in the detection of rare events in accelerator physics

    Lack of Association between Measles Virus Vaccine and Autism with Enteropathy: A Case-Control Study

    Get PDF
    Background: The presence of measles virus (MV) RNA in bowel tissue from children with autism spectrum disorders (ASD) and gastrointestinal (GI) disturbances was reported in 1998. Subsequent investigations found no associations between MV exposure and ASD but did not test for the presence of MV RNA in bowel or focus on children with ASD and GI disturbances. Failure to replicate the original study design may contribute to continued public concern with respect to the safety of the measles, mumps, and rubella (MMR) vaccine. Methodology/Principal Findings: The objective of this case-control study was to determine whether children with GI disturbances and autism are more likely than children with GI disturbances alone to have MV RNA and/or inflammation in bowel tissues and if autism and/or GI episode onset relate temporally to receipt of MMR. The sample was an age-matched group of US children undergoing clinically-indicated ileocolonoscopy. Ileal and cecal tissues from 25 children with autism and GI disturbances and 13 children with GI disturbances alone (controls) were evaluated by real-time reverse transcription (RT)-PCR for presence of MV RNA in three laboratories blinded to diagnosis, including one wherein the original findings suggesting a link between MV and ASD were reported. The temporal order of onset of GI episodes and autism relative to timing of MMR administration was examined. We found no differences between case and control groups in the presence of MV RNA in ileum and cecum. Results were consistent across the three laboratory sites. GI symptom and autism onset were unrelated to MMR timing. Eighty-eight percent of ASD cases had behavioral regression. Conclusions/Significance: This study provides strong evidence against association of autism with persistent MV RNA in the GI tract or MMR exposure. Autism with GI disturbances is associated with elevated rates of regression in language or other skills and may represent an endophenotype distinct from other ASD

    Collaborative Hubs: Making the Most of Predictive Epidemic Modeling

    Get PDF
    The COVID-19 pandemic has made it clear that epidemic models play an important role in how governments and the public respond to infectious disease crises. Early in the pandemic, models were used to estimate the true number of infections. Later, they estimated key parameters, generated short-term forecasts of outbreak trends, and quantified possible effects of interventions on the unfolding epidemic. In contrast to the coordinating role played by major national or international agencies in weather-related emergencies, pandemic modeling efforts were initially scattered across many research institutions. Differences in modeling approaches led to contrasting results, contributing to confusion in public perception of the pandemic. Efforts to coordinate modeling efforts in so-called “hubs” have provided governments, healthcare agencies, and the public with assessments and forecasts that reflect the consensus in the modeling community. This has been achieved by openly synthesizing uncertainties across different modeling approaches and facilitating comparisons between them

    Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum.

    Get PDF
    Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved

    Influence of band width on the scattered ion yield spectra of a He + Ion by resonant or quasi-resonant charge exchange neutralization

    Get PDF
    The influence of the band structure, especially the bandwidth, on the scattered ion yield spectra of a He+ ion by the resonant or quasi-resonant neutralization was theoretically examined using quantum rate equations. When calculating the scattered ion yield spectra of He+ to simulate the experimental data, we observed that the band structure, especially the bandwidth, had a strong influence on the spectra at relatively low incident He+ ion energies of less than several hundred eV. Through many simulations, it was determined that theoretical calculations that include bandwidth calculation can simulate or reproduce the experimentally observed spectra of He+-In, He+-Ga, and He+-Sn systems. In contrast, simulations not including bandwidth simulation could neither reproduce nor account for such spectra. Furthermore, the calculated ion survival probability (ISP) at low incident ion energies tended to decrease with increasing bandwidth. This decrease in ISP probably corresponds to the relatively small scattered ion yield usually observed at low incident ion energies. Theoretically, such a decrease indicates that a He+ ion with a low incident energy can be easily neutralized on the surface when the bandwidth is large

    Built Shallow to Maintain Homeostasis and Persistent Infection: Insight into the Transcriptional Regulatory Network of the Gastric Human Pathogen Helicobacter pylori

    Get PDF
    Transcriptional regulatory networks (TRNs) transduce environmental signals into coordinated output expression of the genome. Accordingly, they are central for the adaptation of bacteria to their living environments and in host–pathogen interactions. Few attempts have been made to describe a TRN for a human pathogen, because even in model organisms, such as Escherichia coli, the analysis is hindered by the large number of transcription factors involved. In light of the paucity of regulators, the gastric human pathogen Helicobacter pylori represents a very appealing system for understanding how bacterial TRNs are wired up to support infection in the host. Herein, we review and analyze the available molecular and “-omic” data in a coherent ensemble, including protein–DNA and protein–protein interactions relevant for transcriptional control of pathogenic responses. The analysis covers ∼80% of the annotated H. pylori regulators, and provides to our knowledge the first in-depth description of a TRN for an important pathogen. The emerging picture indicates a shallow TRN, made of four main modules (origons) that process the physiological responses needed to colonize the gastric niche. Specific network motifs confer distinct transcriptional response dynamics to the TRN, while long regulatory cascades are absent. Rather than having a plethora of specialized regulators, the TRN of H. pylori appears to transduce separate environmental inputs by using different combinations of a small set of regulators
    corecore