7,730 research outputs found

    Fast Magnetosonic Waves Driven by Gravitational Waves

    Get PDF
    The propagation of a gravitational wave (GW) through a magnetized plasma is considered. In particular, we study the excitation of fast magnetosonic waves (MSW) by a gravitational wave, using the linearized general-relativistic hydromagnetic equations. We derive the dispersion relation for the plasma, treating the gravitational wave as a perturbation in a Minkowski background space-time. We show that the presence of gravitational waves will drive magnetosonic waves in the plasma and discuss the potential astrophysical implications.Comment: 12 pages, 2 figures, Astronomy and Astrophysics in pres

    A ‘3P’ soft power model: an agile approach to diplomatic strategy

    Get PDF
    Soft power is the ability to shape the preferences of others through appeal and attraction rather than coerce using hard power. Today, most countries are embracing the notion of soft power. Managing soft power resources at the disposal of governments and deploying them effectively is critical for an agile government to build an attractive country image, and thereby enhancing their competitiveness in today’s dynamic and competitive global landscape. This includes but not limited to promoting their country’s products and services globally, attract foreign investors, and promoting international tourism. In this study, we develop and validate a novel ‘3P’ soft power model, using the perceptions about a country’s ‘products’, ‘places’, and ‘people’. Using 167 usable responses obtained from a structured country-wide survey in the UAE, the 3P model developed from the literature was tested for reliability, validity, and model-fitness. While Cronbach’s alpha values confirmed the reliability of first-order constructs (products, place and people), the second-order confirmatory factor analysis (CFA) established the convergent and discriminant validity of the constructs, and operationalization of ‘3P Soft Power’ as a higher (second)-order model. The results have implications for governments and researchers in promoting soft power by leveraging its products, places and people. A robust higher-order factor model for soft power using 3P’s has not been developed previously and constitutes the novelty of this study

    How inflation, market capitalization, industrial production and the economic sentiment indicator affect the EU-12 stock markets

    Get PDF
    In the present study we map the relationship between the EU-12 stock market price indices and four crucial macroeconomic factors, using panel data analysis. The examined variables are market capitalization, industrial production, the economic sentiment indicator, and inflation, while the twelve countries are those which have adopted the euro. The empirical results reveal a strong effect of the first three factors, while inflation has a negative but not statistically significant coefficient. Further, the variables that affect the stock markets positively are market capitalization and the economic sentiment indicator. Finally, an applied statistical model confirms the significant convergence of the EU-12 stock markets in the long run, indicating a low geographic diversification across European markets.peer-reviewe

    Towards Improved Forecasts of Atmospheric and Oceanic Circulations over the Complex Terrain of the Eastern Mediterranean

    Get PDF
    Forecasting atmospheric and oceanic circulations accurately over the Eastern Mediterranean has proved to be an exceptional challenge. The existence of fine-scale topographic variability (land/sea coverage) and seasonal dynamics variations can create strong spatial gradients in temperature, wind and other state variables, which numerical models may have difficulty capturing. The Hellenic Center for Marine Research (HCMR) is one of the main operational centers for wave forecasting in the eastern Mediterranean. Currently, HCMR's operational numerical weather/ocean prediction model is based on the coupled Eta/Princeton Ocean Model (POM). Since 1999, HCMR has also operated the POSEIDON floating buoys as a means of state-of-the-art, real-time observations of several oceanic and surface atmospheric variables. This study attempts a first assessment at improving both atmospheric and oceanic prediction by initializing a regional Numerical Weather Prediction (NWP) model with high-resolution sea surface temperatures (SST) from remotely sensed platforms in order to capture the small-scale characteristics

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.

    Reconstructing complex lineage trees from scRNA-seq data using MERLoT

    No full text
    Advances in single-cell transcriptomics techniques are revolutionizing studies of cellular differentiation and heterogeneity. It has become possible to track the trajectory of thousands of genes across the cellular lineage trees that represent the temporal emergence of cell types during dynamic processes. However, reconstruction of cellular lineage trees with more than a few cell fates has proved challenging. We present MERLoT (https://github.com/soedinglab/merlot), a flexible and user-friendly tool to reconstruct complex lineage trees from single-cell transcriptomics data. It can impute temporal gene expression profiles along the reconstructed tree. We show MERLoT’s capabilities on various real cases and hundreds of simulated datasets

    Remarks on the Configuration Space Approach to Spin-Statistics

    Full text link
    The angular momentum operators for a system of two spin-zero indistinguishable particles are constructed, using Isham's Canonical Group Quantization method. This mathematically rigorous method provides a hint at the correct definition of (total) angular momentum operators, for arbitrary spin, in a system of indistinguishable particles. The connection with other configuration space approaches to spin-statistics is discussed, as well as the relevance of the obtained results in view of a possible alternative proof of the spin-statistics theorem.Comment: 18 page

    Hidden geometric correlations in real multiplex networks

    Full text link
    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.Comment: Supplementary Materials available at http://www.nature.com/nphys/journal/v12/n11/extref/nphys3812-s1.pd

    The spinorial geometry of supersymmetric backgrounds

    Full text link
    We propose a new method to solve the Killing spinor equations of eleven-dimensional supergravity based on a description of spinors in terms of forms and on the Spin(1,10) gauge symmetry of the supercovariant derivative. We give the canonical form of Killing spinors for N=2 backgrounds provided that one of the spinors represents the orbit of Spin(1,10) with stability subgroup SU(5). We directly solve the Killing spinor equations of N=1 and some N=2, N=3 and N=4 backgrounds. In the N=2 case, we investigate backgrounds with SU(5) and SU(4) invariant Killing spinors and compute the associated spacetime forms. We find that N=2 backgrounds with SU(5) invariant Killing spinors admit a timelike Killing vector and that the space transverse to the orbits of this vector field is a Hermitian manifold with an SU(5)-structure. Furthermore, N=2 backgrounds with SU(4) invariant Killing spinors admit two Killing vectors, one timelike and one spacelike. The space transverse to the orbits of the former is an almost Hermitian manifold with an SU(4)-structure and the latter leaves the almost complex structure invariant. We explore the canonical form of Killing spinors for backgrounds with extended, N>2, supersymmetry. We investigate a class of N=3 and N=4 backgrounds with SU(4) invariant spinors. We find that in both cases the space transverse to a timelike vector field is a Hermitian manifold equipped with an SU(4)-structure and admits two holomorphic Killing vector fields. We also present an application to M-theory Calabi-Yau compactifications with fluxes to one-dimension.Comment: Latex, 54 pages, v2: clarifications made and references added. v3: minor changes. v4: minor change
    • 

    corecore