445 research outputs found
Toward homochiral protocells in noncatalytic peptide systems
The activation-polymerization-epimerization-depolymerization (APED) model of
Plasson et al. has recently been proposed as a mechanism for the evolution of
homochirality on prebiotic Earth. The dynamics of the APED model in
two-dimensional spatially-extended systems is investigated for various
realistic reaction parameters. It is found that the APED system allows for the
formation of isolated homochiral proto-domains surrounded by a racemate. A
diffusive slowdown of the APED network such as induced through tidal motion or
evaporating pools and lagoons leads to the stabilization of homochiral bounded
structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure
Studies in molecular structure, symmetry and conformation I
Crystals of 1-aminocyclooctanecarboxylic acid hydrobromide are orthorhombic, with a = 26·026, b =7·087, c = 6·149, Z = 4 and space group P 2 1 2 1 2 1 .The structure was solved in projections by direct methods and later refined with three-dimensional data using a full-matrix least-squares treatment. All hydrogen atoms were located from a difference Fourier and the final R factor for the 1128 observed reflections was 8·62 %. The molecules are held together by a series of hydrogen bonds in a three-dimensional network. A detailed discussion of the intramolecular and the intermolecular features of the structure is presented. The cyclooctane ring is found to exist in the boat-chair conformation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44829/1/10870_2005_Article_BF01198532.pd
Catalytic Cycle of Multicopper Oxidases Studied by Combined Quantum- and Molecular-Mechanical Free-Energy Perturbation Methods
We have used combined quantum mechanical and molecular mechanical free-energy perturbation
methods in combination with explicit solvent simulations to study the reaction mechanism of the
multicopper oxidases, in particular the regeneration of the reduced state from the native
intermediate. For 52 putative states of the trinuclear copper cluster, differing in the oxidation states
of the copper ions and the protonation states of water- and O2-derived ligands, we have studied
redox potentials, acidity constants, isomerisation reactions, as well as water- and O2 binding
reactions. Thereby, we can propose a full reaction mechanism of the multicopper oxidases with
atomic detail. We also show that the two copper sites in the protein communicate so that redox
potentials and acidity constants of one site are affected by up to 0.2 V or 3 pKa units by a change
in the oxidation state of the other site
Peptide Bond Distortions from Planarity: New Insights from Quantum Mechanical Calculations and Peptide/Protein Crystal Structures
By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of Cα substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed
Polymorphic Signature of the Anti-inflammatory Activity of 2,2′- {[1,2-Phenylenebis(methylene)]bis(sulfanediyl)}bis(4,6- dimethylnicotinonitrile)
Weak noncovalent interactions are the basic forces in crystal engineering. Polymorphism in flexible molecules is very common, leading to the development of the crystals of same organic compounds with different medicinal and material properties. Crystallization of 2,2′- {[1,2-phenylenebis(methylene)]bis(sulfanediyl)}bis(4,6-dimethylnicotinonitrile)
by evaporation at room temperature from ethyl acetate and hexane and from methanol and ethyl acetate gave stable polymorphs 4a and 4b, respectively, while in acetic acid, it gave metastable polymorph 4c. The polymorphic behavior of the compound has been visualized through singlecrystal X-ray and Hirshfeld analysis. These polymorphs are
tested for anti-inflammatory activity via the complete Freund’s adjuvant-induced rat paw model, and compounds have exhibited moderate activities. Studies of docking in the catalytic site of cyclooxygenase-2 were used to identify potential anti-inflammatory lead compounds. These results suggest that the supramolecular aggregate structure, which is formed in solution, influences the solid state structure and the biological activity obtained upon crystallization
Stability mechanisms of a thermophilic laccase probed by molecular dynamics.
Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å) and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K), probing structural changes associated with enthalpy-entropy compensation. Approaching T opt (∼350 K) from 300 K, this change correlated with a beginning "unzipping" of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive) at 400 K, suggesting a general salt stabilization effect. In contrast, F(-) (but not Cl(-)) specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(-) intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes
Design and Synthesis of High Affinity Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP)
N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization
Water in Cavity−Ligand Recognition
We use explicit solvent molecular dynamics simulations to estimate free energy, enthalpy, and entropy changes along the cavity-ligand association coordinate for a set of seven model systems with varying physicochemical properties. Owing to the simplicity of the considered systems we can directly investigate the role of water thermodynamics in molecular recognition. A broad range of thermodynamic signatures is found in which water (rather than cavity or ligand) enthalpic or entropic contributions appear to drive cavity-ligand binding or rejection. The unprecedented, nanoscale picture of hydration thermodynamics can help the interpretation and design of protein-ligand binding experiments. Our study opens appealing perspectives to tackle the challenge of solvent entropy estimation in complex systems and for improving molecular simulation models
- …