7,644 research outputs found

    On the spectrum of facet crystallization waves at the smooth 4He crystal surface

    Get PDF
    The wavelike processes of crystallization and melting or crystallization waves are well known to exist at the 4He crystal surface in the rough state. Much less is known about crystallization waves for the 4He crystal surface in the smooth well-faceted state below the roughening transition temperature. To meet the lack, we analyze here the spectrum of facet crystallization waves and its dependence upon the wavelength, perturbation amplitude, and the number of possible facet steps distributed somehow over the wavelength. All the distinctive features of facet crystallization waves from conventional waves at the rough surface result from a nonanalytic cusplike behavior in the angle dependence for the surface tension of smooth crystal facets.Comment: 7 pages, 3 figures, 1 tabl

    Fine structure of the local pseudogap and Fano effect for superconducting electrons near a zigzag graphene edge

    Full text link
    Motivated by recent scanning tunneling experiments on zigzag-terminated graphene this paper investigates an interplay of evanescent and extended quasiparticle states in the local density of states (LDOS) near a zigzag edge using the Green's function of the Dirac equation. A model system is considered where the local electronic structure near the edge influences transport of both normal and superconducting electrons via a Fano resonance. In particular, the temperature enhancement of the critical Josephson current and 0-pi transitions are predicted.Comment: 5 pages, 5 figures, to be published in Phys. Rev.

    On the spatial structure of the Perseids meteor stream

    Get PDF
    The analysis of radar observations of the Perseid meteor stream conducted in an ionospherical laboratory in the period from 1964 to 1981 is presented. The Perseids meteor rates were determined by the fluctuation method. Analysis of their hourly distributions showed that the stream maximum position is different for different years, i.e., the stream nodal position is constantly changing. The results of the analysis are presented and discussed

    Plasmon-mediated superradiance near metal nanostructures

    Full text link
    We develop a theory of cooperative emission of light by an ensemble of emitters, such as fluorescing molecules or semiconductor quantum dots, located near a metal nanostructure supporting surface plasmon. The primary mechanism of cooperative emission in such systems is resonant energy transfer between emitters and plasmons rather than the Dicke radiative coupling between emitters. We identify two types of plasmonic coupling between the emitters, (i) plasmon-enhanced radiative coupling and (ii) plasmon-assisted nonradiative energy transfer, the competition between them governing the structure of system eigenstates. Specifically, when emitters are removed by more than several nm from the metal surface, the emission is dominated by three superradiant states with the same quantum yield as a single emitter, resulting in a drastic reduction of ensemble radiated energy, while at smaller distances cooperative behavior is destroyed by nonradiative transitions. The crossover between two regimes can be observed in distance dependence of ensemble quantum efficiency. Our numerical calculations incorporating direct and plasmon-assisted interactions between the emitters indicate that they do not destroy the plasmonic Dicke effect.Comment: 12 pages, 10 figure

    Two-photon correlations as a sign of sharp transition in quark-gluon plasma

    Get PDF
    The photon production arising due to time variation of the medium has been considered. The Hamilton formalism for photons in time-variable medium (plasma) has been developed with application to inclusive photon production. The results have been used for calculation of the photon production in the course of transition from quark-gluon phase to hadronic phase in relativistic heavy ion collisions. The relative strength of the effect as well as specific two- photon correlations have been evaluated. It has been demonstrated that the opposite side two-photon correlations are indicative of the sharp transition from the quark-gluon phase to hadrons.Comment: 23 pages, 2 figure

    Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems

    Get PDF
    A diagrammatic method is presented for averaging over the circular ensemble of random-matrix theory. The method is applied to phase-coherent conduction through a chaotic cavity (a ``quantum dot'') and through the interface between a normal metal and a superconductor.Comment: 37 pages RevTeX, 21 postscript figures include

    Coexisting ordinary elasticity and superfluidity in a model of defect-free supersolid

    Full text link
    We present the mechanics of a model of supersolid in the frame of the Gross-Pitaevskii equation at T=0KT=0K that do not require defects nor vacancies. A set of coupled nonlinear partial differential equations plus boundary conditions is derived. The mechanical equilibrium is studied under external constrains as steady rotation or external stress. Our model displays a paradoxical behavior: the existence of a non classical rotational inertia fraction in the limit of small rotation speed and no superflow under small (but finite) stress nor external force. The only matter flow for finite stress is due to plasticity.Comment: 6 pages, 2 figure

    Radiative double electron capture by bare nucleus with emission of one photon

    Full text link
    Calculation of the cross-section for the process of double electron capture by bare nucleus with emission of a single photon is presented. The double electron capture is evaluated within the framework of Quantum Electrodynamics (QED). Line-Profile Approach (LPA) is employed. Since the radiative double electron capture is governed by the electron correlation, corrections to the interelectron interaction were calculated with high accuracy, partly to all orders of the perturbation theory

    A quantum hydrodynamics approach to the formation of new types of waves in polarized two-dimension systems of charged and neutral particles

    Full text link
    In this paper we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Though we focused primarily on the two-dimension physical systems, the method is valid for three-dimension and one-dimension systems too. The presented method is based upon the Schr\"{o}dinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schr\"{o}dinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimension (2D) ion and hole gas placed into an external electric field which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma and 2D electron-hole plasma. Generation of waves in 3D system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.Comment: 15 pages, 7 figure

    Effect of fluctuations on the superfluid-supersolid phase transition on the lattice

    Full text link
    We derive a controlled expansion into mean field plus fluctuations for the extended Bose-Hubbard model, involving interactions with many neighbors on an arbitrary periodic lattice, and study the superfluid-supersolid phase transition. Near the critical point, the impact of (thermal and quantum) fluctuations on top of the mean field grows, which entails striking effects, such as negative superfluid densities and thermodynamical instability of the superfluid phase -- earlier as expected from mean-field dynamics. We also predict the existence of long-lived "supercooled" states with anomalously large quantum fluctuations.Comment: 5 pages of RevTex4; as published in Physical Review
    corecore