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The wavelike processes of crystallization and melting or crystallization waves are well known to exist at the 
4He crystal surface in the rough state. Much less is known about crystallization waves for the 4He crystal surface 
in the smooth well-faceted state below the roughening transition temperature. To meet the lack, we analyze here 
the spectrum of facet crystallization waves and its dependence upon the wavelength, perturbation amplitude, and 
the number of possible facet steps distributed somehow over the wavelength. All the distinctive features of facet 
crystallization waves from conventional waves at the rough surface result from a nonanalytic cusplike behavior 
in the angle dependence for the surface tension of smooth crystal facets. 

PACS: 67.80.–s Quantum solids; 
68.08.–p Liquid-solid interfaces. 
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1. Introduction 

Since the prediction by Andreev and Parshin [1] in 
1978, crystallization waves at the superfluid-solid 4He in-
terface have become a well-known phenomenon. At low 
temperature the 4He crystal in contact with its liquid phase 
can support weakly damped oscillations of the interface 
due to processes of crystallization and melting. From the 
dynamical point of view such weakly damped crystalliza-
tion waves at the rough crystal surface are an immediate 
counterpart of the familiar gravitational-capillary waves at 
the interface between two normal liquids (see review [2]).  

To date, the crystallization wave phenomena in 4He 
have extensively been studied for the rough state of crystal 
surfaces, but not much study has been made for the well-
faceted and atomically smooth crystal surfaces which may 
have an infinitely large surface stiffness. The most distinc-
tive feature of the smooth faceted surface from the rough 
one is the existence of nonanalytic cusplike behavior in the 
angle dependence for the surface tension, e.g., [2–4]. The 
presence of singularity leads to qualitative distinctions in a 
number of the phenomena at the smooth faceted crystal 
surface, e.g., amplitude dependence velocity of traveling 
waves [5], quantum fingering of the inverted liquid-crystal 
interface in the field of gravity [6], Rayleigh-Taylor insta-
bility with generation of crystallization waves [7]. 

In present work, we develop a theory on the spectrum 
of facet crystallization waves at the smooth faceted surface 
of a 4He crystal in contact with its liquid phase. We con-

sider a few possible types of facet crystallization waves 
and determine the dispersion relation between the frequen-
cy and the wave vector, perturbation wave amplitude and 
the number of the crystal facet steps per wavelength. For 
simplicity, we discuss the basal plane of hexagonal 4He 
crystal as an example of the crystal facet and disregard any 
anisotropy in the basal plane. 

2. Lagrangian 

Let us assume that the crystal surface is parallel to the 
xy plane, with vertical position at = 0z . In order to derive 
the oscillation spectrum of a facet surface, we proceed as 
follows. Let us call = ( , )tζ ζ r  the displacement of the sur-
face from its horizontal position z = 0. In the lack of energy 
dissipation the surface oscillations can be described by the 
action 

 = [ ( , ), ( , )]S dt L t tζ ζ∫ r r  (1) 

with the following Lagrangian 

 2 2eff ( , ) ( , ')[ ( , ), ( , )] =
2 2 | ' |

t tL t t d rd r
ρ ζ ζ′ζ ζ −

π −∫
r rr r

r r
  

 2 2 21( ) 1 ( ) .
2

d r g⎛ ⎞− α + ∇ζ + Δρ ζ⎜ ⎟
⎝ ⎠∫ n   

Here = ( , )x yr  is a two-dimensional radius-vector. The 
first term in the Lagrangian represents the kinetic energy of 
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the interface having an effective density eff .ρ  We assume 
that both the liquid and the solid phases are incompressi-
ble. Because of low temperature consideration we will also 
neglect the normal component density in the superfluid 
phase or, equivalently, difference between the superfluid 
density sρ  and the density of the liquid phase .ρ  Then the 
effective interface density effρ  is given by 

 2
eff = ( ) /′ρ ρ −ρ ρ   

and depends on the difference = ′Δρ ρ −ρ  between the 
solid density ′ρ  and the liquid density .ρ  For our purpos-
es, the exact magnitude of the effective density is ines-
sential. 

The second and third terms in the Lagrangian are the 
surface energy and potential energy of the interface in the 
field of gravity with acceleration g. 

Unlike the liquid-liquid interface, the surface tension 
( )α n  for the crystal facet depends essentially on the direc-

tion of the normal n  to the interface. In our simple case 
this is a function of angle θ  alone between the normal and 

the crystallographic [0001] or c -axis of the crystal hcp 
structure with the geometric relation | tan | = | |.θ ∇ζ  

 For the crystal facet tilted by small angle θ  from the 
basal plane, the expansion of surface tension ( )α θ  in se-
ries in θ  starts as, e.g., Refs. 2,4, 

 0 1( ) = tan | | ; | tan | = | | .α θ α + α θ + θ ∇ζ…  (2) 

We do not write the next terms of expansion, e.g., cubic 
one due to step-step interaction, since we assume to study 
only small bending of the crystal surface. The angular be-
havior has a nonanalytic cusplike behavior at = 0θ  due to 

1 1= ( )Tα α  representing a ratio of the linear facet step 
energy β  to the crystallographic interplane spacing. Below 
the roughening transition temperature for the basal plane 

RT ∼ 1.2 K the facet step energy = ( )Tβ β  is positive and 
vanishes for temperatures > .RT T  

To consider a travelling wave, e.g., propagating from 
the left to the right, we represent the interface perturbation 
as ( , ) = ( )t tζ ζ −r r V . Here V  is the phase velocity of the 
wave. Then the action (1) can be rewritten as 

_____________________________________________ 

 
2 2

2 2 2eff ( ) ( ' ) 1= ( ( ) 1 ( ) ) .
2 2 | ' | ' 2

d rd r t tS dt d r g
⎧ ⎫′ρ ∂ζ − ∂ζ −⎪ ⎪⎛ ⎞⎛ ⎞ − α + ∇ζ + Δρ ζ⎨ ⎬⎜ ⎟⎜ ⎟π − ∂ ∂⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

∫ ∫ ∫
r V r VV V n

r r r r
  

 _______________________________________________ 

Since the integration is performed over r  and ′r  within 
the infinite limits and the kernel in the kinetic term de-
pends on difference | |′−r r  alone, we can shift the argu-

ment in ζ  by .tV  Next, by integrating twice by parts, we 
arrive at 

_____________________________________________ 

 2 2 2 2 2eff 1 1= ( ) ( ') ( ( ) 1 ( ) ) .
2 ' 2 | ' | 2

S dt d rd r d r g
ρ⎧ ⎫∂ ∂⎛ ⎞⎛ ⎞′ ζ ζ ⋅ ⋅ − α + ∇ζ + Δρ ζ⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂ π −⎝ ⎠⎝ ⎠⎩ ⎭

∫ ∫ ∫r r V V n
r r r r

  

 _______________________________________________ 

In what follows, we will study sufficiently small bend-
ing of the crystal surface with the sufficiently small dis-
placements ζ  and small angles θ . Involving inequality 
| | 1∇ζ  and | tan | = | |,θ ∇ζ  we take only first terms in 
the expansion of the surface energy 

 2 2
0 1 0( ) 1 ( ) | | ( ) / 2.α + ∇ζ ≈ α +α ∇ζ +α ∇ζn   

Next, we will choose the x -axis as a direction of the wave 
propagation = ( ,0,0)VV  and replace x′  with x  in the 
spatial derivatives. Finally, we arrive at 

_____________________________________________ 

 
2 2 2

2 2 2 2eff 0
12

1[ ] [ = 0] = ( ) ( ) | | ( ) .
2 2 | ' | 2 2
V

S S dt d rd r x x d r g
x

⎧ ⎫⎛ ⎞ρ α⎛ ⎞∂ ζ⎪ ⎪′ ′ζ − ζ − ζ ζ + α ∇ζ + ∇ζ + Δρ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟π −∂ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∫ ∫ ∫r r

 (3) 

 _______________________________________________ 

Variation / ( )S xδ δζ  yields the equation for interface os-
cillations 

 2
1( ) ( ) sgn = 0 .G x d r

x x
∂ ⎡ ∂ζ ⎤⎛ ⎞′ ′ ′− ζ + α ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∫ r r  (4) 

Here, for convenience, we have introduced the Green func-
tion according to  

 
2

2
eff 2

1( ) =
2 | |

G V
x

⎛ ⎞∂′− −ρ +⎜ ⎟′π −∂ ⎝ ⎠
r r

r r
  

 
2

0 2 ( ) .g
x
∂ ′+ α δ − − Δρ
∂

r r  (5) 

The solution of Eq. (4) for = 0V  has been studied in Ref. 6. 
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Before solving Eq. (4), we make the following remarks. 
First, in the regions with ( ) 0x′ζ ≠  the equation (4) reduc-
es to a linear equation with the difference kernel 

 2( ') ( ) = 0 .G x d r′ ′− ζ∫ r r   

The solution can be found as a sum of independent Fourier 
harmonics ( ) = exp ( )q

q
x iqxζ ζ∑ . For a single harmonic 

 0( ) = exp ( ) or ( ) = cos ( ),q qx iqx x q x xζ ζ ± ζ ζ −  (6) 

one should have ( ) = 0.qG q ζ  For an existence of nontrivi-
al solutions, it is necessary to put ( ) = 0.G q  Thus, vector 
q  must satisfy the condition 

 
2

2 2 2 2
eff 0 eff 0( ) = = [ ( )] = 0.qG q V q g q V V q

q
ρ −α − Δρ ρ −   

  (7) 

Here we have introduced notation 0 ( )V q  for the phase ve-
locity of crystallization waves at the rough crystal surface 
with the spectrum 0 ( ):qω  

 3
0 0 0 0 eff( ) = ( ) / , ( ) = ( ) / .V q q q q q gqω ω α + Δρ ρ   

Second, in the regions with ( ) 0x′ζ ≡  the solution is 
trivial, i.e., 

 ( ) = const .xζ   

And the last, since during the melting-crystallization 
process the total mass of the solid and liquid phases re-
mains invariable, the solution of Eq. (4) must satisfy the 
following condition 

 ( ) = 0.x dxζ∫   

As a result, the general solution for profile ( )xζ  should 
represent a train of flat segments and half-sinusoids. The 
width of a half-sinusoid, which we denote / 2,l  is go-
verned by the magnitude of vector q  according to 

( ) = 0G q  or 0 ( ) =V q V  and is equal to / 2 = / .l qπ  The 
half-sinusoid, which connects two neighboring flat seg-
ments, can be regarded as a macroscopic facet step in con-
trast to elementary steps of an atomic scale. To illustrate, 
we give two examples of such facet crystallization waves 
with alternation of one or two various flat segments in 
Figs. 1 and 2. 

It is obvious that the wavelength λ  cannot be less than 
a sum of two half-sinusoids = 2 / .l qπ  In other words, the 

wave number = 2 /k π λ  does not exceed vector q , i.e., 
.k q  Later, it will be seen that always 0( ) ( ).k kω ω  

Besides the wavelength, the wave spectrum at the crys-
tal facet will also be characterized by the number of flat 
segments and their amplitudes. The width of macroscopic 
crystal steps / 2 = /l qπ  depends on a ratio of wave fre-
quency ω  to wave number k  and can be determined using 
relation 

 0 ( )
= .

q
k q

ωω  (8) 

Provided ,l λ  the width of half-sinusoids can be neg-
lected in first approximations and the macroscopic facet 
steps can be treated as a kink of zero width. Usually, this is 
a range of sufficiently high frequencies 0( ) ( )k kω ω  and 
small wave perturbation amplitudes | | .lζ λ  

3. Simplest type of waves 

Let us start from the simplest type of the crystallization 
wave which is formed by alternating a single flat segment 
of height ζ  and a half-sinusoid of width / 2l  so that 

( ) = 0x dxζ∫  (Fig. 1). In this case the wave perturbation is 
specified by 

   

1, | | <
4

2( ) = cos (| | – ) , < | | < .
4 4 4

1, < | | <
4 2

lx

l l lx x x
l

l x

λ−⎧
⎪
⎪
⎪
⎪ π λ− λ− λ+⎪ ⎡ ⎤ζ ζ⎨ ⎢ ⎥⎣ ⎦⎪
⎪
⎪

λ + λ⎪ −⎪⎩

 (9) 

The total length of the flat segments is equal to .lλ −  For 
correctness of approximation used, we should assume that 
| | / 2 / 2 .lζ π λ π  

To determine the spectrum for such type of the facet 
wave, we calculate the action as a function of the wave 
amplitude ζ  and then minimize the action. The calculation 
is readily performed in the Fourier representation using 

 ( ) = exp ( ) ,n n
n

x ik xζ ζ∑   

 = 2 / = ( = 0, 1, 2 ).nk n kn nπ λ ± ± …  (10) 

– /2� �/2

Fig. 1. The wave is formed by alternating one flat segment of
length (λ – l)/2 and kink of width l/2. 

0 �

Fig. 2. The wave is composed of alternating two flat segments of 
different lengths and four kinks of width l/2 each. 
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Hence we have for the variation of the action taken from 
the flat crystal surface and ascribed per wavelength 

 1
=

1[ ] [ = 0] = ( ) 4 | | .n n n
n

S S G k
∞

ω −
−∞

ζ − ζ ζ ζ − α ζ
λ ∑  (11) 

The second term is a contribution due to formation of 
the facet segment with the step amplitude 2 .ζ  The number 
of such steps over wavelength equals 2 in our specific case. 
The calculation of Fourier components is straightforward 

 
/2

/2
= ( ) exp ( ) = ,n n nx ik x dx f

λ

−λ

ζ ζ − ζλ∫   

 
2 2 2

sin( / 2) cos( / 2 )= cos
( / 2) 21 /

n
n nl nf

n n l
π π λ π⎛ ⎞

−⎜ ⎟π − λ⎝ ⎠
 (12) 

with the obvious properties =n n−ζ ζ  and =2 = 0.n mζ  For 
= ,lλ  harmonics 1 1= = 1/ 2f f−  alone remain nonzero. 

Inserting Eq. (12) into (11) and minimizing the action 
/ | |= 0,S∂ ∂ζ  we arrive at the equation which determines 

the spectrum of facet crystallization wave 

 2 12
( ) = .

| |n n
n

G k fω
α

λ ζ∑  (13) 

Then, using (12) and = 2 / ,l qπ  we have 

 
2

2 2 2eff 1
0 2 1

=0

1 (2 1) = ,
2 1 2 | |m

m

k
k m g f

k m

∞

+
⎛ ⎞ρ ω α

−α + − Δρ⎜ ⎟⎜ ⎟+ π ζ⎝ ⎠
∑

 

2

2
2 1 2 2 2 2 2 2

(2 1)cos 24 1= , = 0,1,2,
(2 1) [1 (2 1) / ]

m

km
q

f m
m m k q

+

⎡ ⎤π
+⎢ ⎥

⎣ ⎦
π + − +

…

  (14) 

The magnitude of vector q  is determined from the condi-
tion 0 ( ) / = / .q q kω ω  

We first analyze the limiting case of infinitely narrow 
step l λ  or .k q  In this approximation one can here 
neglect the contributions from the regular 0α  surface and 
gravitational gΔρ  terms and estimate 2 1mf +  at point 

= 0.k  Then, a sum in (14) reduces to 

 
2 2

eff 2 3 2
=0

4 1 7 (3)= ,
(2 1) 2mk km

∞ω ζ ω
ρ

π + π
∑   

where (3) 1.20ζ ≈  is the Riemann zeta-function. Finally, 
we get the spectrum 

 
2 3

2 1 1
2

eff eff

4= = .
7 (3) | | 7 (3) | |

kα απ π
ω

ζ ρ ζ ζ ρ λ ζ
 (15) 

The phase velocity V  depends on the perturbation ampli-
tude alone 

 
1/2

1

eff
= = .

7 (3) | |
V

k
⎛ ⎞αω π
⎜ ⎟ζ ρ ζ⎝ ⎠

 

A special feature of the spectrum is its growing stiffness as 
| | 0ζ →  when the frequency of surface oscillations be-
comes infinitely large. Regardless of magnitudes 0α  and 

gΔρ  the behavior 1/2| |−ω ζ∼  is universal in the | | 0ζ →  
limit. 

To understand the typical magnitudes and applicability 
of our approximations, we start from the case when wave-
length λ  exceeds slightly the double width of crystal facet 
step, i.e., ( ) / 1.lλ − λ  Then, in Eq. (14) the main con-
tribution results from the first term with = 0.m  Approx-
imately, one has 

 
2

1
0

eff 0

1 1( ) = ( ) .
( ) | |

k
k k

k
α

ω ω +
πρ ω ζ

 (16) 

The effect of crystal facet smoothness on the wave spec-
trum due to nonzero 1α  is governed by a ratio 

 
2

1 01
2 2 2

0 0

2 /1 = ,
| | | |1 /

k
kk g

πα αα λ
ζ ζα + Δρ + λ λ

  

where 0 0= 2 / gλ π α Δρ  is a usual capillary length. To 
have a strong effect on the spectrum in the sense 

0( ) ( ),k kω ω  we should satisfy the inequality 

 1
2 2

0 0

2
| | .

1 /
πα λ

ζ
α + λ λ

 (17) 

Below, in detail, we will analyze most interesting re-
gion of sufficiently small perturbation amplitudes 0ζ →  
and wavelengths smaller than capillary length 0.λ λ  
Neglecting gravitational term in (14), we have 

 

2
3

3 3 2 2 2 2
=0

(2 1)cos 21
(2 1) [1 (2 1) / ]m

km
qk

m q m k q

∞
⎡ ⎤π

+⎢ ⎥⎛ ⎞ ⎣ ⎦− =⎜ ⎟⎜ ⎟+ − +⎝ ⎠
∑   

 
2

1
2

eff
= .

8 | |
kαπ

ρ ω ζ
  

Involving that 3 2
0 ef/ = / ( ) 1k q kα ρ ω  and estimating 

the above sum within logarithmic accuracy as 

 2 27 (3) / 8 ( / 8 1)( / ) ln( / ) ,k q q kζ − π −   

we find the spectrum with the correction due to finiteness 
of 0α  

 
2/32 2

2 1 1

eff 0

8 7 (3)1 | |
7 (3) | | 21 (3)

k
k

⎡ ⎛ ⎞α απ π − ζ⎢ω ≈ + ζ ×⎜ ⎟ζ ρ ζ ζ π α⎢ ⎝ ⎠⎣
 

 1

0

1ln .
7 (3) | |k

⎤⎛ ⎞πα
× ⎥⎜ ⎟ζ α ζ ⎥⎝ ⎠⎦
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The width of the kink between two flat segments can readi-
ly be estimated from 2 2

eff 0= ( ) / ( )q k kρ ω α  as 

 0

1
7 (3) | | .

2
l α
≈ ζ ζ

α
 (18) 

Thus, the approximation of zero-width facet step l λ  
can be justified for the small amplitude perturbations if 

 1

0
| | .

14 (3)
αλ

ζ
ζ α

  

On the whole, the spectrum of facet crystallization 
waves can qualitatively be described by introducing effec-
tive surface tension or stiffness dependent on both wave 
vector and perturbation amplitude [6] 

 1
eff 0 (3) .

7 | |k
απ

α →α + ζ
ζ

 (19) 

4. Waves with a few crystal facet steps 

Here we consider another type of facet crystallization 
waves with an arbitrary number of crystal facet steps per 
wavelength .λ  The wave amplitude ζ  is assumed to be 
sufficiently small in order to neglect the regular surface 

0α  and gravitational gΔρ  terms. This limit corresponds to 
high frequencies 0( ) ( )k kω ω  and zero width of the kink 
between two flat segments. Thus, the profile of the per-
turbed crystal surface represents a broken line consisting of 
vertical steps and horizontal segments. For the definite-
ness, we consider the surface profile from 4N  vertical 
steps linking the same = 4M N  flat facet segments with 
length = /x MΔ λ  (Fig. 3). 

The vertical steps, having the same height of / ,Nζ  are 
located at the points 

 2 1= , = 1, 2, , .
2k

kx x k N−
± Δ …   

The points 1kx +  and kx  are connected with a horizontal 
segment of length xΔ  with the vertical amplitude 

 | |= , = 0,1, 2, , 2 .k
N k N k N

N
− −

ζ ±ζ …   

In accordance with (10) we find the Fourier components 
for ( )xζ  

 
/2

/2
= ( ) exp ( 2 / )n dx x inx

λ

−λ

ζ ζ − π λ =∫   

 
12 1

=1

| |= 2 sin(2 / )
xkN

k xk

N k Ni nx dx
N

+− − −
− ζ π λ =∑ ∫   

 
=1

= (cos cos ), = (2 1).
4

N

k k N k
k

i ni y y y k
n N N+
λ ζ π

− − −
π ∑  

Summation, in essence, is reduced to summing geometric 
series. As a result, we obtain 

 1 ( 1) sin( / 2)= , =
2 sin( / 4 )

n

n n n
i nf f
n N n N

− − π
ζ ζλ

π π
 (20) 

with the obvious properties =n n−ζ ζ  and =2 = 0n mζ . 
Unlike derivation of Eq. (11), we must take here into 

account that each crystal step contributes 1 | |/ Nα ζ  into 
the action and the number of steps equals 4N  at the wave-
length. Since 1 14 | |/ = 4 | |,N Nα ζ α ζ  we have the same 
contribution to the action from the steps and thus the same 
form (13) of the equation to determine the wave spectrum 

 
2 2

eff 2 1 1

=0

| |
=

(2 1) 2 | |
m

m

f k
k m

∞
+ρ ω α
+ π ζ∑  (21) 

but with another Fourier component 2 1.mf +  Applying 
2 1mf +  from (20), we have 

 
2

2 1
3 2 2 eff=0

1 1 = .
2 | |(2 1) [ (2 1) / 4 ]sinm

k
m N m N

∞ απ
ω

ρ ζ+ π +
∑   

Finally, the spectrum of facet crystallization waves is 
determined by 

 
2

2 1
1 1

eff

2= , = ,
7 (3) | |N N

k
s

απ
ω ω ω

ζ ρ ζ
 (22) 

where Ns  is given by 

 

3

2 =0

2 3 2

=0

4 (2 1)
=

(2 1) [ (2 1) / 4 ]sin

m
N

m

m
s

N m m N

∞
−

∞
− −

+

+ π +

∑

∑
  

and 

 
2

2 7 (3)= .
62 (5)

s∞
π ζ
ζ

  

The factor Ns  varies insignificantly within the range from 
1 for = 1N  to 1.136 for =N ∞  (Table 1). 

We have analyzed above the wave spectrum for the 
regular arrangement and identical height of crystal steps 
over wavelength. This is not, of course, solely possible 
structure with 4N  crystal steps. The location of crystal 

– /2�

�/2

–�

�

Fig. 3. The sketch of crystallization wave of the total perturbation
amplitude ζ and wavelength λ. 
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steps and their heights can have an arbitrary and disordered 
structure. However, the dimensional estimate (22) for the 
spectrum holds for. As concerns the factor Ns , it varies 
slightly as a function of the perturbation profile. 

Provided the regular part of surface tension 0α  differs 
from zero, the maximum number of crystal steps 4 mN  is 
limited. Using magnitude l  for the width of the kink be-
tween two flat segments  

 0

1
| | ,l

α
ζ

α
∼   

we estimate the number 4 mN  of possible crystal steps for 
the given frequency ω  according to 

 1

0
4 .

| |mN
l

αλ λ
α ζ

∼ ∼  (23) 

Obviously, the smaller the perturbation amplitude | |,ζ  the 
larger the number of possible crystal steps. 

On the whole, the frequency of crystallization waves at 
a smooth crystal facet proves to be dependent not only on 
the wavelength, but also on the wave amplitude and the 
number of crystal facet steps which can be placed within 
the wavelength. From the experimental point of view this 
means that the excitation of crystallization waves with a 
fixed frequency will result in exciting some train of waves 
with different wavelengths, amplitude, and the number of 
crystal facet steps. In this connection the shape of the per-
turbed crystal facet will resemble rather an irregular and 
ill-defined profile with some elements of irregular-like 
character. A weak dependence of the wave frequency on 
the number of steps facilitates such phenomenon. In some 
sense one might say about transition to a rough state of the 
surface and destruction of the crystal faceting [7]. 

5. Conclusion 

The crystallization waves at the smooth crystal facets 
are expected to demonstrate a more varied and complicated 
picture than those at the rough crystal surfaces. The plane 
crystallization wave represents an alternation of flat crystal 
facets linked via macroscopic crystal steps with the width 
dependent on the wave velocity. Most striking phenomena 
should appear in the limit of sufficiently small perturbation 
amplitudes. The frequency spectrum of facet waves de-
pends significantly on the perturbation amplitude. The de-
pendence on the structure of wave perturbation and the 
number of crystal facet steps is not so drastic. Excitation of 
waves at a given frequency should produce a train consist-

ing of waves differing in wavelength, structure and the 
number of facet steps and interacting nonlinearly with each 
other. This all is in contrast to harmonic waves which exist 
at the rough crystal surfaces and have the lower frequen-
cies at the same wavelengths. Evidently, the distinction 
results from a singularity in the angular behavior of the 
surface tension for the smooth crystal facets. 

Let us estimate typical frequencies for the short wave-
length range 0λ λ ∼  6 mm. Taking effρ ∼  2 mg/cm3, 

1α ∼  0.014 erg/cm 2  and 0α ∼  0.16–0.18 erg/cm2, e.g., [2] 
for the (0001) 4He facet, we have the frequency ω∼  10 kHz 
and velocity V ∼  2 m/s for the wavelength λ∼  1 mm and 
perturbation amplitude | |ζ ∼  1 µm. In this case one may 
expect the maximum number of possible steps over wave-
length to ∼  100. If the perturbation amplitude for the same 
λ  approaches | |ζ ∼  0.1 mm, only one or two steps become 
possible. The wave frequency reduces to about ω∼  2 kHz 
which insignificantly exceeds the magnitude at the rough 
surface. Note that, for the perturbation amplitude of a crystal 
lattice spacing in height, the propagation velocity V  reaches 
the magnitudes of ∼ 100 m/s comparable with the sound 
velocity. 

In principle, one can find a few casual mentions about 
phenomena similar to the formation of crystallization 
waves at the crystal 4He facets under heavy shake of an 
experimental cell [8] or in the process of anomalously fast 
growth of a 4He crystal under high overpressures [9, 10]. 
More convincing observation in favor of an existence of 
progressive facet waves has recently been found [11] at the 
crystal (001) facet in 3He. Apparently, one of complicating 
factors in exciting and studying facet crystallization waves 
may be associated with the threshold character for most of 
phenomena occurring at the smooth crystal facets. In par-
ticular, it may require a sufficiently large size of the facet 
and sufficiently high amplitudes of driving perturbation. In 
this connection it may be helpful to employ the conditions 
close to an onset of some instability, e.g., electrocapillary 
one in an electric field across the interface[6], Rayleigh-
Taylor [7] or Faraday instabilities [12]. 
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