24 research outputs found

    Effective demagnetizing tensors in arrays of magnetic nanopillars

    Get PDF
    A model describing the effect of magnetic dipolar interactions on the susceptibility of magnetic nanopillars is presented. It is an extension of a recently reported model for three-dimensional randomlike dispersions of nearly spherical nanoparticles in equilibrium [Sánchez et al., Phys. Rev. B 95, 134421 (2017)2469-995010.1103/PhysRevB.95.134421], to well-ordered arrays of nanoparticles out of equilibrium. To test it, a high-quality benchmark consisting of a two-dimensional hexagonal arrangement of quasi-identical parallel nickel nanopillars embedded in a porous alumina template was fabricated. This model is based on an effective demagnetizing tensor, which only depends on a few morphological parameters of the sample, as the nearest-neighbor distance between pillars and the volume fraction of pillars in the specimen. It allows us to obtain the nanopillar intrinsic susceptibility tensor from the magnetic response of the nanopillar ensemble. The values of the in-plane and normal-to-plane susceptibility of the sample are successfully predicted by the model. Furthermore, the model reproduces the susceptibility in the applied field direction, measured for different applied field angles. In this way, it provides a simple and accurate treatment to account for the complex magnetic effects produced by dipolar interactions.Facultad de Ciencias ExactasInstituto de Física La Plat

    Self organization in oleic acid-coated CoFe2O4 colloids: a SAXS study

    Get PDF
    We report a structural study of magnetic colloids composed of CoFe₂O₄ nanoparticles (mean radii in the range 2–7 nm) synthesized by thermal decomposition of different high boiling temperature organic solvents in the presence of oleic acid and oleylamine, and subsequently re-suspended in hexane. Although the surfactant layer prevents permanent aggregation and precipitation of the disperse phase, competition between attractive interactions (i.e., dipolar and van der Waals) and repulsive steric interaction leads to self organization of the magnetic nanoparticles. Our small angle X-ray scattering results evidence the presence of distinctive self organized structures in the liquid colloid depending on the type of solvent used in the synthesis. A completely homogeneous dispersion is obtained for those colloids synthesized with benzyl-ether and octadecene. Bi-disperse systems, in which nanoclusters coexist with free nanoparticles, appear when phenyl-ether and trioctylamine are used. Chain-like structures are observed in a colloid containing the particles synthesized using phenyl-ether, while more compact 3D structures form in colloids prepared with particles synthesized with trioctylamine. The presented results have important implications in the design and selection of magnetic nanoparticles for those applications where the size dispersion determines the final efficiency of the material, such as magnetic fluid hyperthermia clinical therapy.Facultad de Ciencias ExactasInstituto de Física La Plat

    Mechanical milling of the intermetallic AlFe

    No full text
    The intermetallic compound AlFe in its ordered B2 phase has been ground under Ar in a ball-milling device. The system evolution under mechanical work has been examined as a function of time of milling by x-ray diffraction, transmission Mo¨ssbauer spectroscopy, and differential scanning calorimetry. Short and long range disorder was observed. The evolution of the long range order parameter with milling time is analyzed up to the completion of the solid state reaction when a steady state value is reached. The short range order evolution is consistent with a nonstatistical order distribution throughout the sample but mainly distributed in two regions with different degrees of order each. Kinetic analysis of the reordering and recrystallization has been performed under continuous heating and isothermal calorimetric regimes. Modeling of these processes is presented as well as the estimated values of both the enthalpy and the activation energy of the reordering process. Results are compared with preceding information on related systems

    Nanocomposites Based on Waterborne Polyurethane Matrix and Fe3O4 Nanoparticles: Synthesis and Characterization

    No full text
    Herein, the feasibility of producing waterborne polyurethane nanocomposites containing magnetic nanoparticles (MNPs) by casting method, to obtain films with potential magnetic properties, is shown. The characterization of the resulting nanocomposites is carried out using infrared spectroscopy, thermal analysis, colorimetry, tensile tests, microscopy and magnetic tests. The films become opaque and dark colored when MNP is incorporated. The mechanical behavior of the nanocomposites is that of tough plastics, with Young's modulus in the range of 106–143 MPa, increasing with the MNP concentration. Aggregation of the MNP takes place at concentrations above 1.5 wt%, as observed in scanning electron microscopy (SEM) images of the fracture surfaces. Magnetization saturation increases with the concentration of MNP. A small coercivity indicates the presence of a fraction of blocked particles whose size exceeds the critical size for superparamagnetism at the temperature of the measurements.Fil: Meiorin, Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Scherzer, Selina L.. Universitat Erlangen-Nuremberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Mucci, Veronica Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Actis, Daniel Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Mendoza Zélis, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Schubert, Dirk W.. Universitat Erlangen-Nuremberg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Mosiewicki, Mirna Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Aranguren, Mirta Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin

    Effective demagnetizing tensors in arrays of magnetic nanopillars

    Get PDF
    A model describing the effect of magnetic dipolar interactions on the susceptibility of magnetic nanopillars is presented. It is an extension of a recently reported model for three-dimensional randomlike dispersions of nearly spherical nanoparticles in equilibrium [Sánchez, Phys. Rev. B 95, 134421 (2017)2469-995010.1103/PhysRevB.95.134421], to well-ordered arrays of nanoparticles out of equilibrium. To test it, a high-quality benchmark consisting of a two-dimensional hexagonal arrangement of quasi-identical parallel nickel nanopillars embedded in a porous alumina template was fabricated. This model is based on an effective demagnetizing tensor, which only depends on a few morphological parameters of the sample, as the nearest-neighbor distance between pillars and the volume fraction of pillars in the specimen. It allows us to obtain the nanopillar intrinsic susceptibility tensor from the magnetic response of the nanopillar ensemble. The values of the in-plane and normal-to-plane susceptibility of the sample are successfully predicted by the model. Furthermore, the model reproduces the susceptibility in the applied field direction, measured for different applied field angles. In this way, it provides a simple and accurate treatment to account for the complex magnetic effects produced by dipolar interactions.Fil: Mendoza Zélis, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería; ArgentinaFil: Vega, V.. Universidad de Oviedo; EspañaFil: Prida, V. M.. Universidad de Oviedo; EspañaFil: Costa Arzuza, L. C.. Universidad de la Costa; ColombiaFil: Béron, F.. Universidade Estadual de Campinas; BrasilFil: Pirota, K. R.. Universidade Estadual de Campinas; BrasilFil: López Ruiz, R.. Universidade Estadual de Campinas; BrasilFil: Sánchez, Francisco Homero. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentin
    corecore