2,495 research outputs found

    A relativistic parton cascade with radiation

    Get PDF
    We consider the evolution of a parton system which is formed at the central rapidity region just after an ultrarelativistic heavy ion collision. The evolution of the system, which is composed of gluons, quarks and antiquarks, is described by a relativistic Boltzmann equations with collision terms including radiation and retardation effects. The equations are solved by the test particle method using Monte-Carlo sampling. Our simulations do not show any evidence of kinetic equilibration, unless the cross sections are artificially increased to unrealistically large values.Comment: 14 pages, 4 figure

    Quantum Walk in Position Space with Single Optically Trapped Atoms

    Full text link
    The quantum walk is the quantum analogue of the well-known random walk, which forms the basis for models and applications in many realms of science. Its properties are markedly different from the classical counterpart and might lead to extensive applications in quantum information science. In our experiment, we implemented a quantum walk on the line with single neutral atoms by deterministically delocalizing them over the sites of a one-dimensional spin-dependent optical lattice. With the use of site-resolved fluorescence imaging, the final wave function is characterized by local quantum state tomography, and its spatial coherence is demonstrated. Our system allows the observation of the quantum-to-classical transition and paves the way for applications, such as quantum cellular automata.Comment: 7 pages, 4 figure

    Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome specific DNA probes

    Get PDF
    Two cloned repetitive DNA probes, pXBR and CY1, which bind preferentially to specific regions of the human X and Y chromosome, respectively, were used to study the distribution of the sex chromosomes in human lymphocyte nuclei by in situ hybridization experiments. Our data indicate a large variability of the distances between the sex chromosomes in male and female interphase nuclei. However, the mean distance observed between the X and Y chromosome was significantly smaller than the mean distance observed between the two X-chromosomes. The distribution of distances determined experimentally is compared with three model distributions of distances, and the question of a non-random distribution of sex chromosomes is discussed. Mathematical details of these model distributions are provided in an Appendix to this paper. In the case of a human translocation chromosome (XqterXp22.2::Yq11Y qter) contained in the Chinese hamster x human hybrid cell line 445 x 393, the binding sites of pXBR and CY1 were found close to each other in most interphase nuclei. These data demonstrate the potential use of chromosome-specific repetitive DNA probes to study the problem of interphase chromosome topography

    Chromosome assignment of two cloned DNA probes hybridizing predominantly to human sex chromosomes

    Get PDF
    In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites

    Prospects for measurement and control of the scattering length of metastable helium using photoassociation techniques

    Full text link
    A numerical investigation of two-laser photoassociation (PA) spectroscopy on spin-polarized metastable helium (He*) atoms is presented within the context of experimental observation of the least-bound energy level in the scattering potential and subsequent determination of the s-wave scattering length. Starting out from the model developed by Bohn and Julienne [Phys. Rev. A \textbf{60}, (1999) 414], PA rate coefficients are obtained as a function of the parameters of the two lasers. The rate coefficients are used to simulate one- and two-laser PA spectra. The results demonstrate the feasibility of a spectroscopic determination of the binding energy of the least-bound level. The simulated spectra may be used as a guideline when designing such an experiment, whereas the model may also be employed for fitting experimentally obtained PA spectra. In addition, the prospects for substantial modification of the He* scattering length by means of optical Feshbach resonances are considered. Several experimental issues relating to the numerical investigation presented here are discussed.Comment: 9 pages, 7 figure

    On the Stereochemistry of the Cations in the Doping Block of Superconducting Copper-Oxides

    Full text link
    Metal-oxygen complexes containing Cu,- Tl-, Hg-, Bi- and Pb-cations are electronically active in superconducting copper-oxides by stabilizing single phases with enhanced TcT_c, whereas other metal-oxygen complexes deteriorate copper-oxide superconductivity. Cu, Tl, Hg, Bi, Pb in their actual oxidation states are closed shell d10d^{10} or inert s2s^2 pair ions. Their electronic configurations have a strong tendency to polarize the oxygen environment. The closed shell dd ions with low lying nd10nd9(n+1)snd^{10}\leftrightarrow nd^9(n+1)s excitations form linear complexes through dz2sd_{z^2}-s hybridization polarizing the apical oxygens. Comparatively low nd9(n+1)snd^9(n+1)s excitation energies distinguish Cu1+,3+,Tl3+,Hg2+\rm Cu^{1+,3+}, Tl^{3+}, Hg^{2+} from other closed shell d10d^{10} ions deteriorating copper-oxide superconductivity, {\it e.g.} Zn2+\rm Zn^{2+}.Comment: 5 pages, uses REVTEX. To be published in: J. Superconductivity, Proc. Int. Workshop on "Phase Separation, Electronic Inhomogenities and Related Mechanisms for High T_c Superconductors", Erice (Sicily) 9-15 July 199

    Organization of Multinational Activities and Ownership Structure

    Get PDF
    We develop a model in which multinational investors decide about the modes of organization, the locations of production, and the markets to be served. Foreign investments are driven by market-seeking and cost-reducing motives. We further assume that investors face costs of control that vary among sectors and increase in distance. The results show that (i) production intensive sectors are more likely to operate a foreign business independent of the investment motive, (ii) that distance may have a non-monotonous effect on the likelihood of horizontal investments, and (iii) that globalization, if understood as reducing distance, leads to more integration

    Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform

    Get PDF
    Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.

    Localization Properties of Two Interacting Electrons in a Disordered Quasi One-Dimensional Potential

    Full text link
    We study the transport properties of two electrons in a quasi one-dimensional disordered wire. The electrons are subject to both, a disorder potential and a short range two-body interaction. Using the approach developed by Iida et al. [ Ann. Phys. (N.Y.) 200 (1990) 219 ], the supersymmetry technique, and a suitable truncation of Hilbert space, we work out the two-point correlation function in the framework of a non-linear sigma model. We study the loop corrections to arbitrary order. We obtain a remarkably simple and physically transparent expression for the change of the localization length caused by the two-body interaction.Comment: 10 page

    New Fermions at e+^+e^- Colliders: I. Production and Decay

    Full text link
    We analyze the production in e+ee^+e^- collisions of new heavy fermions stemming from extensions of the Standard Model. We write down the most general expression for the production of two heavy fermions and their subsequent decays, allowing for the polarization of the e+^+e^- initial state and taking into account the final polarization of the fermions. We then discuss the various decay modes including cascade and three body decays, and the production mechanisms, both pair production and single production in association with ordinary fermions.Comment: 21 pages (no figures), Preprint UdeM-LPN-TH-93-15
    corecore