A numerical investigation of two-laser photoassociation (PA) spectroscopy on
spin-polarized metastable helium (He*) atoms is presented within the context of
experimental observation of the least-bound energy level in the scattering
potential and subsequent determination of the s-wave scattering length.
Starting out from the model developed by Bohn and Julienne [Phys. Rev. A
\textbf{60}, (1999) 414], PA rate coefficients are obtained as a function of
the parameters of the two lasers. The rate coefficients are used to simulate
one- and two-laser PA spectra. The results demonstrate the feasibility of a
spectroscopic determination of the binding energy of the least-bound level. The
simulated spectra may be used as a guideline when designing such an experiment,
whereas the model may also be employed for fitting experimentally obtained PA
spectra. In addition, the prospects for substantial modification of the He*
scattering length by means of optical Feshbach resonances are considered.
Several experimental issues relating to the numerical investigation presented
here are discussed.Comment: 9 pages, 7 figure