11 research outputs found
Distribution, size, shape, growth potential and extent of abdominal aortic calcified deposits predict mortality in postmenopausal women
Background: Aortic calcification is a major risk factor for death from cardiovascular disease. We investigated the relationship between mortality and the composite markers of number, size, morphology and distribution of calcified plaques in the lumbar aorta.Methods: 308 postmenopausal women aged 48-76 were followed for 8.3 ± 0.3 years, with deaths related to cardiovascular disease, cancer, or other causes being recorded. From lumbar X-rays at baseline the number (NCD), size, morphology and distribution of aortic calcification lesions were scored and combined into one Morphological Atherosclerotic Calcification Distribution (MACD) index. The hazard ratio for mortality was calculated for the MACD and for three other commonly used predictors: the EU SCORE card, the Framingham Coronary Heart Disease Risk Score (Framingham score), and the gold standard Aortic Calcification Severity score (AC24) developed from the Framingham Heart Study cohorts.Results: All four scoring systems showed increasing age, smoking, and raised triglyceride levels were the main predictors of mortality after adjustment for all other metabolic and physical parameters. The SCORE card and the Framingham score resulted in a mortality hazard ratio increase per standard deviation (HR/SD) of 1.8 (1.51-2.13) and 2.6 (1.87-3.71), respectively. Of the morphological x-ray based measures, NCD revealed a HR/SD >2 adjusted for SCORE/Framingham. The MACD index scoring the distribution, size, morphology and number of lesions revealed the best predictive power for identification of patients at risk of mortality, with a hazard ratio of 15.6 (p < 0.001) for the 10% at greatest risk of death.Conclusions: This study shows that it is not just the extent of aortic calcification that predicts risk of mortality, but also the distribution, shape and size of calcified lesions. The MACD index may provide a more sensitive predictor of mortality from aortic calcification than the commonly used AC24 and SCORE/Framingham point card systems
Safety and quality of food contact materials. Part 1: Evaluation of analytical strategies to introduce migration testing into good manufacturing practice
The results of a research project (EU AIR Research Programme CT94-1025) aimed to introduce control of migration into good manufacturing practice and into enforcement work are reported. Representative polymer classes were defined on the basis of chemical structure, technological function, migration behaviour and market share. These classes were characterized by analytical methods. Analytical techniques were investigated for identification of potential migrants. High-temperature gas chromatography was shown to be a powerful method and H-1-magnetic resonance provided a convenient fingerprint of plastic materials. Volatile compounds were characterized by headspace techniques, where it was shown to be essential to differentiate volatile compounds desorbed from those generated during the thermal desorption itself. For metal trace analysis, microwave mineralization followed by atomic absorption was employed. These different techniques were introduced into a systematic testing scheme that is envisaged as being suitable both for industrial control and for enforcement laboratories. Guidelines will be proposed in the second part of this paper
HIV protease inhibitor resistance
HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of structure-based drug design. The introduction of first-generation PIs marked the start of combination antiretroviral therapy. However, low bioavailability, high pill burden, and toxicity ultimately reduced adherence and limited long-term viral inhibition. Therapy failure was often associated with multiple protease inhibitor resistance mutations, both in the viral protease and its substrate (HIV gag protein), displaying a broad spectrum of resistance mechanisms. Unfortunately, selection of protease inhibitor resistance mutations often resulted in cross-resistance to other PIs. Therefore, second-generation approaches were imperative. Coadministration of a cytochrome P-450 3A4 inhibitor greatly improved the plasma concentration of PIs in the patient. A second advance was the development of PIs that were efficacious against first-generation PI-resistant HIV. Both approaches increased the number of protease mutations required by the virus to develop clinically relevant resistance, thereby raising the genetic barrier towards PI resistance. These improvements greatly contributed to the success of PI-based therapy