258 research outputs found

    Imaging and Dynamics of Light Atoms and Molecules on Graphene

    Full text link
    Observing the individual building blocks of matter is one of the primary goals of microscopy. The invention of the scanning tunneling microscope [1] revolutionized experimental surface science in that atomic-scale features on a solid-state surface could finally be readily imaged. However, scanning tunneling microscopy has limited applicability due to restrictions, for example, in sample conductivity, cleanliness, and data aquisition rate. An older microscopy technique, that of transmission electron microscopy (TEM) [2, 3] has benefited tremendously in recent years from subtle instrumentation advances, and individual heavy (high atomic number) atoms can now be detected by TEM [4 - 7] even when embedded within a semiconductor material [8, 9]. However, detecting an individual low atomic number atom, for example carbon or even hydrogen, is still extremely challenging, if not impossible, via conventional TEM due to the very low contrast of light elements [2, 3, 10 - 12]. Here we demonstrate a means to observe, by conventional transmision electron microscopy, even the smallest atoms and molecules: On a clean single-layer graphene membrane, adsorbates such as atomic hydrogen and carbon can be seen as if they were suspended in free space. We directly image such individual adatoms, along with carbon chains and vacancies, and investigate their dynamics in real time. These techniques open a way to reveal dynamics of more complex chemical reactions or identify the atomic-scale structure of unknown adsorbates. In addition, the study of atomic scale defects in graphene may provide insights for nanoelectronic applications of this interesting material.Comment: 9 pages manuscript and figures, 9 pages supplementary informatio

    Use of a radiopaque localizer grid to reduce radiation exposure

    Get PDF
    Abstract Background Minimally invasive spine surgery requires placement of the skin incision at an ideal location in the patient's back by the surgeon. However, numerous fluoroscopic x-ray images are sometimes required to find the site of entry, thereby exposing patients and Operating Room personnel to additional radiation. To minimize this exposure, a radiopaque localizer grid was devised to increase planning efficiency and reduce radiation exposure. Results The radiopaque localizer grid was utilized to plan the point of entry for minimally invasive spine surgery. Use of the grid allowed the surgeon to accurately pinpoint the ideal entry point for the procedure with just one or two fluoroscopic X-ray images. Conclusions The reusable localizer grid is a simple and practical device that may be utilized to more efficiently plan an entry site on the skin, thus reducing radiation exposure. This device or a modified version may be utilized for any procedure involving the spine

    PAPP-A2 Deficiency Does Not Exacerbate the Phenotype of a Mouse Model of Intrauterine Growth Restriction

    Get PDF
    BACKGROUND: Pregnancy-associated plasma protein-A2 (PAPP-A2) is consistently upregulated in the placentae of pregnancies complicated by preeclampsia and fetal growth restriction. The causes and significance of this upregulation remain unknown, but it has been hypothesized that it is a compensatory response to improve placental growth and development. We predicted that, if the upregulation of PAPP-A2 in pregnancy complications reflects a compensatory response, then deletion of Pappa2 in mice would exacerbate the effects of a gene deletion previously reported to impair placental development: deficiency of matrix metalloproteinase-9 (MMP9). METHODS: We crossed mice carrying deletions in Pappa2 and Mmp9 to produce pregnancies deficient in one, both, or neither of these genes. We measured pregnancy rates, number of conceptuses, fetal and placental growth, and the histological structure of the placenta. RESULTS: We found no evidence of reduced fertility, increased pregnancy loss, or increased fetal demise in Mmp9 -/- females. In pregnancies segregating for Mmp9, Mmp9 -/- fetuses were lighter than their siblings with a functional Mmp9 allele. However, deletion of Pappa2 did not exacerbate or reveal any effects of Mmp9 deficiency. We observed some effects of Pappa2 deletion on placental structure that were independent of Mmp9 deficiency, but no effects on fetal growth. At G16, male fetuses were heavier than female fetuses and had heavier placentae with larger junctional zones and smaller labyrinths. CONCLUSIONS: Effects of Mmp9 deficiency were not exacerbated by the deletion of Pappa2. Our results do not provide evidence that upregulation of placental PAPP-A2 represents a mechanism to compensate for impaired fetal growth. &nbsp

    Quantum point contact on graphite surface

    Get PDF
    The conductance through a quantum point contact created by a sharp and hard metal tip on the graphite surface has features which to our knowledge have not been encountered so far in metal contacts or in nanowires. In this paper we first investigate these features which emerge from the strongly directional bonding and electronic structure of graphite, and provide a theoretical understanding for the electronic conduction through quantum point contacts. Our study involves the molecular-dynamics simulations to reveal the variation of interlayer distances and atomic structure at the proximity of the contact that evolves by the tip pressing toward the surface. The effects of the elastic deformation on the electronic structure, state density at the Fermi level, and crystal potential are analyzed by performing self-consistent-field pseudopotential calculations within the local-density approximation. It is found that the metallicity of graphite increases under the uniaxial compressive strain perpendicular to the basal plane. The quantum point contact is modeled by a constriction with a realistic potential. The conductance is calculated by representing the current transporting states in Laue representation, and the variation of conductance with the evolution of contact is explained by taking the characteristic features of graphite into account. It is shown that the sequential puncturing of the layers characterizes the conductance.Comment: LaTeX, 11 pages, 9 figures (included), to be published in Phys. Rev. B, tentatively scheduled for 15 September 1998 (Volume 58, Number 12

    Energy spectra of fractional quantum Hall systems in the presence of a valence hole

    Full text link
    The energy spectrum of a two-dimensional electron gas (2DEG) in the fractional quantum Hall regime interacting with an optically injected valence band hole is studied as a function of the filling factor ν\nu and the separation dd between the electron and hole layers. The response of the 2DEG to the hole changes abruptly at dd of the order of the magnetic length λ\lambda. At d<λd<\lambda, the hole binds electrons to form neutral (XX) or charged (XX^-) excitons, and the photoluminescence (PL) spectrum probes the lifetimes and binding energies of these states rather than the original correlations of the 2DEG. The ``dressed exciton'' picture (in which the interaction between an exciton and the 2DEG was proposed to merely enhance the exciton mass) is questioned. Instead, the low energy states are explained in terms of Laughlin correlations between the constituent fermions (electrons and XX^-'s) and the formation of two-component incompressible fluid states in the electron--hole plasma. At d>2λd>2\lambda, the hole binds up to two Laughlin quasielectrons (QE) of the 2DEG to form fractionally charged excitons hhQEn_n. The previously found ``anyon exciton'' hhQE3_3 is shown to be unstable at any value of dd. The critical dependence of the stability of different hhQEn_n complexes on the presence of QE's in the 2DEG leads to the observed discontinuity of the PL spectrum at ν=13\nu={1\over3} or 23{2\over3}.Comment: 16 pages, 14 figures, submitted to PR

    Structure determination of the (1×2) and (1×3) reconstructions of Pt(110) by low-energy electron diffraction

    Get PDF
    The atomic geometry of the (1×2) and (1×3) structures of the Pt(100) surface has been determined from a low-energy electron-diffraction intensity analysis. Both structures are found to be of the missing-row type, consisting of (111) microfacets, and with similar relaxations in the subsurface layers. In both reconstructions the top-layer spacing is contracted by approximately 20% together with a buckling of about 0.17 Å in the third layer and a small lateral shift of about 0.04 Å in the second layer. Further relaxations down to the fourth layer were detectable. The surface relaxations correspond to a variation of interatomic distances, ranging from -7% to +4%, where in general a contraction of approximately 3% for the distances parallel to the surface occurs. The Pendry and Zanazzi-Jona R factors were used in the analysis, resulting in a minimum value of RP=0.36 and RZJ=0.26 for 12 beams at normal incidence for the (1×2) structure, and similar agreement for 19 beams of the (1×3) structure. The (1×3) structure has been reproducibly obtained after heating the crystal in an oxygen atmosphere of 5×10-6 mbar at 1200 K for about 30 min and could be removed by annealing at 1800 K for 45 min after which the (1×2) structure appeared again. Both reconstructed surfaces are clean within the detection limits of the Auger spectrometer. CO adsorption lifts the reconstruction in both structures. After desorption at 500 K the initial structures appear again, indicating that at least one of the reconstructions does not represent the equilibrium structure of the clean surface and may be stabilized by impurities

    Atomic force microscopy analysis of nanoparticles in non-ideal conditions

    Get PDF
    Nanoparticles are often measured using atomic force microscopy or other scanning probe microscopy methods. For isolated nanoparticles on flat substrates, this is a relatively easy task. However, in real situations, we often need to analyze nanoparticles on rough substrates or nanoparticles that are not isolated. In this article, we present a simple model for realistic simulations of nanoparticle deposition and we employ this model for modeling nanoparticles on rough substrates. Different modeling conditions (coverage, relaxation after deposition) and convolution with different tip shapes are used to obtain a wide spectrum of virtual AFM nanoparticle images similar to those known from practice. Statistical parameters of nanoparticles are then analyzed using different data processing algorithms in order to show their systematic errors and to estimate uncertainties for atomic force microscopy analysis of nanoparticles under non-ideal conditions. It is shown that the elimination of user influence on the data processing algorithm is a key step for obtaining accurate results while analyzing nanoparticles measured in non-ideal conditions
    corecore