13 research outputs found

    Vitaminer og fedtsyrer i hø og ensilage – hvad sker der vid forvejring og lagring?

    Get PDF
    For at undersøge stabiliteten af vitaminer i moderne ensilage- og høproduktion, har FØJO III projektet ECOVIT, igennem to vÌkstür, mült vitaminindholdet i forskellige grÌsmarksafgrøder ved forskellige høsttidspunkter og sletintervaller. Resultaterne viser, at det største tab af vitaminer og umÌttede fedtsyrer sker i forbindelse med forvejringen, mens tabet i lagringsperioden er begrÌnset

    1,25-Dihydroxyvitamin D3 modulates the phenotype and function of Monocyte derived dendritic cells in cattle

    Get PDF
    Abstract Background The active form of the vitamin D3, 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) has been shown to have major effects not only on physiological processes but also on the regulation of the immune system of vertebrates. Dendritic cells are specialised antigen presenting cells which are in charge of the initiation of T-cell dependant immune responses and as such are key regulators of responses towards pathogens. In this study we set out to evaluate the effects of 1,25-(OH)2D3 on the phenotype of cattle monocyte-derived dendritic cells (MoDCs) and how the conditioning with this vitamin affects the function of these myeloid cells. Results MoDCs were generated from CD14+ monocytes with bovine IL-4 and GM-CSF with or without 1,25-(OH)2D3 supplementation for 10 days. Vitamin D conditioned MoDCs showed a reduced expression of co-stimulatory and antigen presenting molecules, as well as a reduced capability of endocytose ovalbumin. Furthermore, the capacity of MoDCs to induce proliferation in an allogeneic mixed leukocyte reaction was abolished when MoDCs were generated in presence of 1,25-(OH)2D3. LPS induced maturation of 1,25-(OH)2D3conditioned MoDCs resulted in lower secretion of IL-12 and higher IL-10 than that observed in MoDCs. Conclusions The typical immunotolerant phenotype observed in cattle DCs after exposure to 1,25-(OH)2D3 has a significant effect on the functionality of these immune cells, inhibiting the T-cell stimulatory capacity of MoDCs. This could have profound implications on how the bovine immune system deals with pathogens, particularly in diseases such as tuberculosis or paratuberculosis

    Vitamin D Status and Bone and Connective Tissue Turnover in Brown Bears (Ursus arctos) during Hibernation and the Active State

    Get PDF
    BACKGROUND: Extended physical inactivity causes disuse osteoporosis in humans. In contrast, brown bears (Ursus arctos) are highly immobilised for half of the year during hibernation without signs of bone loss and therefore may serve as a model for prevention of osteoporosis. AIM: To study 25-hydroxy-vitamin D (25OHD) levels and bone turnover markers in brown bears during the hibernating state in winter and during the active state in summer. We measured vitamin D subtypes (D₂ and D₃), calcitropic hormones (parathyroid hormone [PTH], 1,25-dihydroxy-vitamin D [1,25(OH)₂D]) and bone turnover parameters (osteocalcin, ICTP, CTX-I), PTH, serum calcium and PIIINP. MATERIAL AND METHODS: We drew blood from seven immobilised wild brown bears during hibernation in February and in the same bears while active in June. RESULTS: Serum 25-hydroxy-cholecalciferol (25OHD₃) was significantly higher in the summer than in the winter (22.8±4.6 vs. 8.8±2.1 nmol/l, two tailed p-2p = 0.02), whereas 25-hydroxy-ergocalciferol (25OHD₂) was higher in winter (54.2±8.3 vs. 18.7±1.7 nmol/l, 2p<0.01). Total serum calcium and PTH levels did not differ between winter and summer. Activated 1,25(OH)₂D demonstrated a statistically insignificant trend towards higher summer levels. Osteocalcin levels were higher in summer than winter, whereas other markers of bone turnover (ICTP and CTX-I) were unchanged. Serum PIIINP, which is a marker of connective tissue and to some degree muscle turnover, was significantly higher during summer than during winter. CONCLUSIONS: Dramatic changes were documented in the vitamin D₃/D₂ ratio and in markers of bone and connective tissue turnover in brown bears between hibernation and the active state. Because hibernating brown bears do not develop disuse osteoporosis, despite extensive physical inactivity we suggest that they may serve as a model for the prevention of this disease
    corecore