292 research outputs found

    Perimeter of sublevel sets in infinite dimensional spaces

    Full text link
    We compare the perimeter measure with the Airault-Malliavin surface measure and we prove that all open convex subsets of abstract Wiener spaces have finite perimeter. By an explicit counter-example, we show that in general this is not true for compact convex domains

    Epstein-Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1

    Get PDF
    The Epstein-Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1

    Integrin Expression by Human Epidermal Keratinocytes Can Be Modulated by Interferon-γ, Transforming Growth Factor-β, Tumor Necrosis Factor-α, and Culture on a Dermal Equivalent

    Get PDF
    Receptors of the integrin family are largely confined to the basal layer of keratinocytes, both in human epidermis and in stratified cultures of human keratinocytes. However, suprabasal integrin expression is observed during epidermal wound healing and in psoriatic lesions. We have investigated potential stimuli of suprabasal expression. Addition of transforming growth factor-β (TGF-β), interferon-γ (IFN-γ or tumor necrosis factor-α (TNF-α) to keratinocytes cultured with a 3T3 feeder layer did not induce suprabasal expression. The cytokines caused small changes in the levels of α2β1 or α3β1 on the surface of basal keratinocytes but had no significant effect on the proportion of cells adhering to fibronectin, type IV collagen, and laminin, and did not cause changes in the mobility of integrin subunits on polyacrylamide gels. Injection of TNF-α or IFN-γ intradermally into healthy human volunteers induced an inflammatory response but did not induce suprabasal integrin expression. However, we did observe transient suprabasal Integrin expression when keratinocytes were grown on a dermal equivalent consisting of fibroblasts in a collagen gel. One week after raising the cultures to the air-liquid interface, β1 integrins were found in all the viable cell layers, with suprabasal cells co-expressing integrins and involucrin; 1 week later integrins were confined to the basal layer. Addition of TGF-β, IFN-γ, or TNF-α to the dermal equivalents neither induced nor inhibited suprabasal integrin expression. We conclude that suprabasal integrin expression is not induced by the inflammatory cytokines tested, and instead may reflect the proliferation/differentiation status of the epidermis

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Investigating polarisation and shape of beam microwave signals at the ANKA storage ring

    Get PDF
    At the ANKA synchrotron radiation facility measure- ments in the microwave range (10 to 12 GHz) employing a LNB (Low Noise Block), which is the receiving part of a Satellite-TV system, have been carried out. Experiments showedthattheobservedsignaldependsonthelengthofthe electron bunches. Furthermore the temporal shape of the microwave signal depends on the detector’s position along the accelerator. Due the LNB antenna’s sensitivity to po- larisation it was also possible to measure the polarisation along the several ns long signal, revealing polarised and non-polarised regions. This paper describes the experimen - tal setup and summarises the observations of the systematic studies performed with the LNB system

    Clinical and surgical data of affected members of a classic CFEOM 1 family

    Get PDF
    BACKGROUND: Congenital fibiosis of the extraocular muscles (CFEOM1) refers to a group of congenital eye movement disorders that are characterized by non-progressive restrictive ophthalmoplegia. We present clinical and surgical data on affected members of a classic CFEOM1 family. METHODS: Ten members of a fifteen-member, three-generation Italian family affected by classic CFEOM participated in this study. Each affected family member underwent ophthalmologic (corrected visual acuity, pupillary function, anterior segment and fundus examination), orthoptic (cover test, cover-uncover test, prism alternate cover test), and preoperative examinations. Eight of the ten affected members had surgery and underwent postoperative examinations. Surgical procedures are listed. RESULTS: All affected members were born with varying degrees of bilateral ptosis and ophthalmoplegia with both eyes fixed in a hypotropic position (classic CFEOM). The affected members clinical data prior to surgery, surgery procedures and postoperative outcomes are presented. On 14 operated eyes to correct ptosis there was an improvement in 12 eyes. In addition, the head position improved in all patients. CONCLUSIONS: Surgery is effective at improving ptosis in the majority of patients with classic CFEOM. However, the surgical approach should be individualized to each patient, as inherited CFEOM exhibits variable expressivity and the clinical features may differ markedly between affected individuals, even within the same family

    Abortive Lytic Reactivation of KSHV in CBF1/CSL Deficient Human B Cell Lines

    Get PDF
    Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade
    • …
    corecore