121 research outputs found
Modification of fallout patterns by precipitation
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Meteorology, 1960.Includes bibliographical references (leaf 68).by Jerome L. Heffter.M.S
Recommended from our members
Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations
The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles
Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones
The effects of multi-layered clouds in the atmospheres of Earth-like planets
orbiting different types of stars are studied. The radiative effects of cloud
particles are directly correlated with their wavelength-dependent optical
properties. Therefore the incident stellar spectra may play an important role
for the climatic effect of clouds. We discuss the influence of clouds with mean
properties measured in the Earth's atmosphere on the surface temperatures and
Bond albedos of Earth-like planets orbiting different types of main sequence
dwarf stars.Comment: accepted for publication in A&
Direct rate measurements of eruption plumes at Augustine volcano: A problem of scaling and uncontrolled variables
The March–April 1986 eruption of Augustine Volcano, Alaska, provided an opportunity to directly measure the flux of gas, aerosol, and ash particles during explosive eruption. Most previous direct measurements of volcanic emission rates are on plumes from fuming volcanoes or on very small eruption clouds. Direct measurements during explosive activity are needed to understand the scale relationships between passive degassing or small eruption plumes and highly explosive events. Conditions on April 3, 1986 were ideal: high winds, clear visibility, moderate activity. Three measurements were made: 1) an airborne correlation spectrometer (Cospec) provided mass flux rates of SO2; 2) treated filter samples chemically characterized the plume and 3) a quartz crystal microcascade impactor provided particle size distribution. Atmospheric conditions on April 3 caused the development of a lee wave plume, which allowed us to constrain a model of plume dispersion leading to a forecast map of concentrations of SO2 at greater distances from the vent. On April 3, 1986, the emission rate of SO2 at Augustine was 24,000 t/d, one of the largest direct volcanic rate measurements yet recorded with a Cospec. The results, coupled with analytical results from samples simultaneously collected on filters, allow us to estimate HCl emissions at 10,000 t/d and ash eruption rate at 1.5×106 t/d. Based on other data, this ash eruption rate is about 1/50 of the maximum rate during the March–April activity. Filter samples show that the gas:aerosol proportions for sulfur and chlorine are about 10:1 and 4:1, respectively. By contrast, measurements of Augustine\u27s plume, together with ground-based gas sampling in July 1986 when the volcano was in a posteruptive fuming state, are 380 t/d SO2 and approximately 8000 t/d HCl with no ash emission. The observations of large Cl releases at Augustine support the Cl abundance conclusions of Johnston (1980) based on study of melt inclusions in the 1976 lavas. The results reinforce the need for more measurements during eruptions and for better understanding of scaling of volcanic emissions of various eruptive components
Nitrogen oxides, regional transport, and ozone air quality: Results of a regional-scale model for the midwestern United States
An overview of the role of NO x in the formation of rural O 3 , regional transport and its potential impact on urban air quality is presented. An analysis of a specific O 3 excursion in southeast Michigan (8-2-90) is performed based on a combined urban and regional-scale model. The regional component of the model represents transport and photochemistry from sources as far away as Texas. Results suggest that rural O 3 and regional transport sensitive to NO x emissions and relatively insensitive to changes in volatile organic carbon (VOC) emissions. This differs from the situation in urban areas, where O 3 is sensitive to both NO x and VOC. Regional transport and upwind NO x emissions have a significant impact on peak O 3 in Detroit. Implications for urban and regional-scale abatement strategies are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43908/1/11270_2004_Article_BF00480817.pd
- …