287 research outputs found

    Real-time quantitative PCR assay with Taqman® probe for rapid detection of MCR-1 plasmid-mediated colistin resistance

    Get PDF
    AbstractHere we report the development of two rapid real-time quantitative PCR assays with TaqMan® probes to detect the MCR-1 plasmid-mediated colistin resistance gene from bacterial isolates and faecal samples from chickens. Specificity and sensitivity of the assay were 100% on bacterial isolates including 18 colistin-resistant isolates carrying the mcr-1 gene (six Klebsiella pneumoniae and 12 Escherichia coli) with a calibration curve that was linear from 101 to 108 DNA copies. Five out of 833 faecal samples from chickens from Algeria were positive, from which three E. coli strains were isolated and confirmed to harbour the mcr-1 gene by standard PCR and sequencing

    Polymorphous Si thin films from radio frequency plasmas of SiH4 diluted in Ar: A study by transmission electron microscopy and Raman spectroscopy

    Get PDF
    In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating

    Gender, hyperandrogenism and vitamin D deficiency related functional and morphological alterations of rat cerebral arteries

    Get PDF
    Hyperandrogenism is a risk factor of cerebrovascular diseases as androgens can alter markedly the regulation of cerebrovascular tone. We examined the combined impact of androgen excess and vitamin D deficiency (VDD), a common co-morbidity in hyperandrogenic disorders, on remodeling and testosterone-induced vascular responses of anterior cerebral arteries (ACA) in order to evaluate the interplay between androgens and VDD in the cerebral vasculature. Male and female Wistar rats were either fed with vitamin D deficient or vitamin D supplemented diet. Half of the female animals from both groups received transdermal testosterone treatment. After 8 weeks, vessel lumen, wall thickness and testosterone-induced vascular tone of isolated ACA were determined using pressure microangiometry and histological examination. Androgen receptor protein expression in the wall of cerebral arteries was examined using immunohistochemistry. In female rats only combined VDD and testosterone treatment decreased the lumen and increased the wall thickness of ACA. In males, however VDD by itself was able to decrease the lumen and increase the wall thickness. Vascular reactivity showed similar alterations: in females, testosterone constricted the ACA only after combined VDD and hyperandrogenism, whereas in males VDD resulted in increased testosterone-induced contractions in spite of decreased androgen receptor expression. In conclusion, a marked interplay between hyperandrogenism and VDD results in inward remodeling and enhanced testosterone-induced constrictions of cerebral arteries, which might compromise the cerebral circulation and thus, increase the risk of stroke in the long term. In addition, the early cerebrovascular manifestation of VDD appears to require androgen excess and thus, depends on gender

    No association between fear of hypoglycemia and blood glucose variability in type 1 diabetes: The cross-sectional VARDIA study

    Get PDF
    AIMS: In type 1 diabetes (T1D), treatment efficacy is limited by the unpredictability of blood glucose results and glycemic variability (GV). Fear of Hypoglycemia (FOH) remains a major brake for insulin treatment optimization. We aimed to assess the association of GV with FOH in participants with T1D in an observational cross-sectional study performed in 9 French Diabetes Centres (NCT02790060). METHODS: Participants were T1D for ≥5 years, aged 18-75 years, on stable insulin therapy for ≥3 months. The coefficient of variation (CV) of blood glucose and mean amplitude of glycemic excursions (MAGE) were used to assess GV from 7-point self-monitoring of blood glucose (SMBG). FOH was assessed using the validated French version of the Hypoglycemia Fear Survey-II (HFS-II) questionnaire. RESULTS: Among a total of 570 recruited participants, 298 were suitable for analysis: 46% women, 58% on continuous subcutaneous insulin infusion [CSII], mean age 49 ± 16 years, HbA1c 7.5 ± 0.9%, HFS-II score 67 ± 18 and 12% with recent history of severe hypoglycemia during the previous 6 months, mean CV 39.8 ± 9.7% and MAGE 119 ± 42 mg/dL. CV and MAGE did not significantly correlate with HFS-II score (R = -0.05;P = 0.457 and R = 0.08;P = 0.170). Participants with severe hypoglycemia in the previous 6 months had higher HFS scores. Participants with higher HFS scores presented more hypoglycemias during follow-up. CONCLUSIONS: FOH as determined using the HFS-II questionnaire was not associated with 7-point SMBG variability in participants with T1D, but was associated with a positive history of severe hypoglycemia. Higher FOH was associated with higher frequency of hypoglycemia during follow-up

    Maternal but Not Paternal Association of Ambulatory Blood Pressure With Albumin Excretion in Young Offspring With Type 1 Diabetes

    Get PDF
    OBJECTIVE: Familial predisposition to hypertension has been associated with the development of diabetic nephropathy in adults, but there are limited data in adolescents. Our aim was to assess whether parental ambulatory blood pressure (ABP) was associated with ABP and albumin excretion in young offspring with type 1 diabetes. RESEARCH DESIGN AND METHODS: Twenty-four-hour ABP monitoring was performed in 509 young offspring (mean +/- SD age 15.8 +/- 2.3 years) with type 1 diabetes, 311 fathers, and 444 mothers. Systolic (SBP) and diastolic blood pressure (DBP) measurements during 24 h, daytime, and nighttime were calculated. Three early morning urinary albumin-to-creatinine ratios (ACRs), A1C, and anthropometric parameters were available for the offspring. RESULTS: All paternal ABP parameters, except for nighttime SBP, were independently related to the offspring's ABP (24-h SBP beta = 0.18, 24-h DBP beta = 0.22, daytime SBP beta = 0.25, daytime DBP beta = 0.23, and nighttime DBP beta = 0.18; all P < 0.01). Maternal 24-h DBP (beta = 0.19, P = 0.004), daytime DBP (beta = 0.09, P = 0.04), and nighttime SBP (beta = 0.24 P = 0.001) were related to the corresponding ABP parameter in the offspring. Significant associations were found between the offspring's logACR and maternal ABP. The association with 24-h DBP (beta = 0.16, P = 0.02), daytime DBP (beta = 0.16 P = 0.02), and nighttime DBP (beta = 0.15 P = 0.03) persisted even after adjustment for the offspring's ABP. Mothers of offspring with microalbuminuria had higher ABP than mothers of offspring without microalbuminuria (all P < 0.05). CONCLUSIONS: In this cohort, parental ABP significantly influenced offspring blood pressure, therefore confirming familial influences on this trait. In addition, maternal ABP, particularly DBP, was closely related to ACR in the offspring, suggesting a dominant effect of maternal genes or an effect of the intrauterine environment on microalbuminuria risk

    A polymorphism in the gene encoding carnosinase (CNDP1) as a predictor of mortality and progression from nephropathy to end-stage renal disease in type 1 diabetes mellitus

    Get PDF
    Aims/hypothesis Homozygosity for a five leucine repeat (5L-5L) in the carnosinase gene (CNDP1) has been found to be cross-sectionally associated with a low frequency of diabetic nephropathy (DN), mainly in type 2 diabetes. We prospectively investigated in patients with type I diabetes whether: (1) 5L-5L is associated with mortality; (2) there is an interaction of 5L-5L with DN or sex for prediction of mortality; and (3) 5L-5L is associated with progression to end-stage renal disease (ESRD). Methods In this prospective study in white European patients with type 1 diabetes, individuals with DN were defined by persistent albuminuria >= 300 mg/24 h. Controls without nephropathy were defined by persistent (>15 years) normoalbuminuria Results The study involved 916 patients with DN and 1,170 controls. During follow-up for 8.8 years, 107 patients (14%) with 5L-5L died compared with 182 patients (13.8%) with other genotypes (p=0.99). There was no significant interaction of 5L-5L with DN for prediction of mortality (p=0.57), but a trend towards interaction with sex (p=0.08). In patients with DN, HR for ESRD in 5L-5L vs other genotypes was not constant over time, with increased risk for 5L-5L beyond 8 years of follow-up (p=0.03). Conclusions/interpretation CNDP1 polymorphism was not associated with mortality, and nor was there an interaction of this polymorphism with DN for prediction of mortality in patients with type 1 diabetes. CNDP1 polymorphism predicts progression to ESRD in patients with DN, but only late after baseline measurements

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Effect of Parental Type 2 Diabetes on Offspring With Type 1 Diabetes

    Get PDF
    OBJECTIVE—The purpose of this study was to study the association between a parental history of type 2 diabetes and the metabolic profile as well as the presence of the metabolic syndrome and diabetes complications in patients with type 1 diabetes
    corecore