210 research outputs found

    Fission studies with 140 MeV α\bm{\alpha}-Particles

    Full text link
    Binary fission induced by 140 MeV α\alpha-particles has been measured for nat^{\rm nat}Ag, 139^{139}La, 165^{165}Ho and 197^{197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z2/A=24Z^2/A=24 is observed.Comment: 4 figures, 2 table

    Am. J. Hum. Genet.

    No full text
    Thrombocytopenia–absent radius (TAR) syndrome is characterized by hypomegakaryocytic thrombocytopenia and bilateral radial aplasia in the presence of both thumbs. Other frequent associations are congenital heart disease and a high incidence of cow’s milk intolerance. Evidence for autosomal recessive inheritance comes from families with several affected individuals born to unaffected parents, but several other observations argue for a more complex pattern of inheritance. In this study, we describe a common interstitial microdeletion of 200 kb on chromosome 1q21.1 in all 30 investigated patients with TAR syndrome, detected by microarray-based comparative genomic hybridization. Analysis of the parents revealed that this deletion occurred de novo in 25% of affected individuals. Intriguingly, inheritance of the deletion along the maternal line as well as the paternal line was observed. The absence of this deletion in a cohort of control individuals argues for a specific role played by the microdeletion in the pathogenesis of TAR syndrome. We hypothesize that TAR syndrome is associated with a deletion on chromosome 1q21.1 but that the phenotype develops only in the presence of an additional as-yet-unknown modifier (mTAR)

    Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera

    Get PDF
    Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication

    Differences in energy balance-related behaviours in European preschool children: The ToyBox-study

    Get PDF
    Background: The aim of the current study was to compare levels of energy balance-related behaviours (physical activity, sedentary behaviour, and dietary behaviours (more specifically water consumption, sugar-sweetened beverage consumption and unhealthy snacking)) in four- to six-year-old preschoolers from six European countries (Belgium, Bulgaria, Germany, Greece, Poland, and Spain) within the ToyBox cross-sectional study. Methods: A sample of 4,045 preschoolers (4.77 ± 0.43 years; 52.2% boys) had valid physical activity data (steps per day), parents of 8,117 preschoolers (4.78 ± 0.46 years; 53.0% boys) completed a parental questionnaire with questions on sedentary behaviours (television viewing, computer use, and quiet play), and parents of 7,244 preschoolers (4.77 ± 0.44 years; 52.0% boys) completed a food frequency questionnaire with questions on water consumption, sugar-sweetened beverage consumption and unhealthy snacking. Results: The highest levels of physical activity were found in Spain (12,669 steps/day on weekdays), while the lowest levels were found in Bulgaria and Greece (9,777 and 9,656 steps/day on weekdays, respectively). German preschoolers spent the least amount of time in television viewing (43.3 min/day on weekdays), while Greek preschoolers spent the most time in television viewing (88.5 min/day on weekdays). A considerable amount of time was spent in quiet play in all countries, with the highest levels in Poland (104.9 min/day on weekdays), and the lowest levels in Spain (60.4 min/day on weekdays). Belgian, German, and Polish preschoolers had the lowest intakes of water and the highest intakes of sugar-sweetened beverages. The intake of snacks was the highest in Belgian preschoolers (73.1 g/day) and the lowest in Greek preschoolers (53.3 g/day). Conclusions: Across six European countries, differences in preschoolers'' energy balance-related behaviours were found. Future interventions should target European preschoolers '' energy balance- related behaviours simultaneously, but should apply country-specific adaptations

    Search for dark photons using data from CRESST-II Phase 2

    Get PDF
    Understanding the nature and origin of dark matter is one of the most important challenges for modern particle physics. During the previous decade the sensitivities of direct dark matter searches have improved by several orders of magnitude. These experiments focus their work mainly on the search for dark-matter particles interacting with nuclei (e.g. Weakly Interacting Massive Particles, WIMPs). However, there exists a large variety of different candidates for dark-matter particles. One of these candidates, the so-called dark photon, is a long-lived vector boson with a kinetic mixing to the standard-model photon. In this work we present the preliminary results of our search for dark photons. Using data from the direct dark matter search CRESST-II Phase 2 we can improve the existing constraints for the kinetic mixing for dark-photon masses between 0.3 and 0.5 keV/c2. In addition, we also present projected sensitivities for the next phases of the CRESST-III experiment showing great potential to improve the sensitivity for dark-photon masses below 1 keV

    Direct dark matter search with the CRESST-III experiment - status and perspectives

    Get PDF
    The CRESST-III experiment, located in the Gran Sasso underground laboratory (LNGS, Italy), aims at the direct detection of dark matter (DM) particles. Scintillating CaWO4 crystals operated as cryogenic detectors are used as target material for DM-nucleus scattering. The simultaneous measurement of the phonon signal from the CaWO4 crystal and of the emitted scintillation light in a separate cryogenic light detector is used to discriminate backgrounds from a possible dark matter signal. The experiment aims to significantly improve the sensitivity for low-mass ( 5-10 GeV/c2) DM particles by using optimized detector modules with a nuclear recoil-energy threshold 100 eV. The current status of the experiment as well as projections of the sensitivity for spin-independent DM-nucleon scattering will be presented

    Probing spin-dependent dark matter interactions with 6 Li: CRESST Collaboration

    Get PDF
    CRESST is one of the most prominent direct detection experiments for dark matter particles with sub- GeV/c2 mass. One of the advantages of the CRESST experiment is the possibility to include a large variety of nuclides in the target material used to probe dark matter interactions. In this work, we discuss in particular the interactions of dark matter particles with protons and neutrons of 6Li. This is now possible thanks to new calculations on nuclear matrix elements of this specific isotope of Li. To show the potential of using this particular nuclide for probing dark matter interactions, we used the data collected previously by a CRESST prototype based on LiAlO2 and operated in an above ground test-facility at Max-Planck-Institut für Physik in Munich, Germany. In particular, the inclusion of 6Li in the limit calculation drastically improves the result obtained for spin-dependent interactions with neutrons in the whole mass range. The improvement is significant, greater than two order of magnitude for dark matter masses below 1 GeV/c2, compared to the limit previously published with the same data
    corecore