30,917 research outputs found

    Particle-size characteristics of the vertical dust profiles of two contrasting dust events in the Channel Country of western Queensland, Australia

    Get PDF
    Spatial and temporal variations in vegetation and soil surface conditions of rangelands add a level of complexity to wind erosion processes which is often difficult to model or measure. Butler and colleagues have developed a methodology which combines computer simulation and experimental measurement to analyse how spatial and temporal changes in dust source area emission rates and atmospheric conditions affect vertical dust concentration profiles during wind erosion events in the Queensland Channel Country. This methodology has not, however, taken into account how variations in dust source area particle-size can affect vertical dust concentration profiles. The present paper examines how the particle-size characteristics of dust source soils affect both vertical dust concentration profiles and the vertical distribution of particle-sizes in two contrasting wind erosion events in the Queensland Channel Country. Comparisons are made between computer simulations of these events and the results of field measurements (of vertical dust concentration profiles) and laboratory measurements (of dust particle-size). Computer simulations of the particle-size emissions from the different dust source areas during the two events produce vertical distributions of dust particle-sizes which are similar to the measured dust particle-sizes for these events. These results indicate that erodibility-induced spatial and temporal variations in particle-size emissions of dust source areas have important influences upon: dust fluxes, vertical dust concentration profiles and the vertical distribution of dust particle-sizes within these profile

    Unsung heroes: Constituency election agents in British general elections

    Get PDF
    Despite their central role in the electoral process, constituency agents have been largely overlooked by political scientists and this article seeks to rectify the omission. It sketches the origins and development of the role of agent from the late 19th century and suggests that a serious rethink of the role took place in the 1990s. Survey-based evidence about the social characteristics of agents is presented confirming that they are largely middle-aged, middle-class, well-educated men. They are also becoming more experienced, offer realistic assessments of the impact of constituency campaigning and, arguably, many take a long-term view of how their party's support can be maximised

    Sumoylation silences the plasma membrane leak K+ channel K2P1.

    Get PDF
    Reversible, covalent modification with small ubiquitin-related modifier proteins (SUMOs) is known to mediate nuclear import/export and activity of transcription factors. Here, the SUMO pathway is shown to operate at the plasma membrane to control ion channel function. SUMO-conjugating enzyme is seen to be resident in plasma membrane, to assemble with K2P1, and to modify K2P1 lysine 274. K2P1 had not previously shown function despite mRNA expression in heart, brain, and kidney and sequence features like other two-P loop K+ leak (K2P) pores that control activity of excitable cells. Removal of the peptide adduct by SUMO protease reveals K2P1 to be a K+-selective, pH-sensitive, openly rectifying channel regulated by reversible peptide linkage

    Analysis of heating rates and forces on bodies subject to rocket exhaust plume impingement

    Get PDF
    Computer programs and engineering methods for calculating heating rates and forces in jet plume impingement problem

    Basic studies of baroclinic flows

    Get PDF
    Computations were completed of transition curves in the conventional annulus, including hysteresis effect. The model GEOSIM was used to compute the transition between axisymmetric flow and baroclinic wave flow in the conventional annulus experiments. Thorough testing and documentation of the GEOSIM code were also completed. The Spacelab 3 results from the Geophysical Fluid Flow Cell (GFFC) were reviewed and numerical modeling was performed of many of the cases with horizontal temperature gradients as well as heating from below, with different rates of rotation. A numerical study of the lower transition to axisymmetric flow in the baroclinic annulus was performed using GEOSIM

    Robust ecological pattern formation induced by demographic noise

    Full text link
    We demonstrate that demographic noise can induce persistent spatial pattern formation and temporal oscillations in the Levin-Segel predator-prey model for plankton-herbivore population dynamics. Although the model exhibits a Turing instability in mean field theory, demographic noise greatly enlarges the region of parameter space where pattern formation occurs. To distinguish between patterns generated by fluctuations and those present at the mean field level in real ecosystems, we calculate the power spectrum in the noise-driven case and predict the presence of fat tails not present in the mean field case. These results may account for the prevalence of large-scale ecological patterns, beyond that expected from traditional non-stochastic approaches.Comment: Revised version. Supporting simulation at: http://guava.physics.uiuc.edu/~tom/Netlogo

    Basic studies of baroclinic flows

    Get PDF
    A fully nonlinear 3-dimensional numerical model (GEOSIM), previously developed and validated for several cases of geophysical fluid flow, has been used to investigate the dynamical behavior of laboratory experiments of fluid flows similar to those of the Earth's atmosphere. The phenomena investigated are amplitude vacillation, and the response of the fluid system to uneven heating and cooling. The previous year's work included hysteresis in the transition between axisymmetric and wave flow. Investigation is also continuing of the flows in the Geophysical Fluid Flow Cell (GFFC), a low-gravity Spacelab experiment. Much of the effort in the past year has been spent in validation of the model under a wide range of external parameters including nonlinear flow regimes. With the implementation of a 3-dimensional upwind differencing scheme, higher spectral resolution, and a shorter time step, the model has been found capable of predicting the majority of flow regimes observed in one complete series of baroclinic annulus experiments of Pfeffer and co-workers. Detailed analysis of amplitude vacillation has revealed that the phase splitting described in the laboratory experiments occurs in some but not all cases. Through the use of animation of the models output, a vivid 3-dimensional view of the phase splitting was shown to the audience of the Southeastern Geophysical Fluid Dynamics Conference in March of this year. A study on interannual variability was made using GEOSIM with periodic variations in the thermal forcing. Thus far, the model has not predicted a chaotic behavior as observed in the experiments, although there is a sensitivity in the wavenumber selection to the initial conditions. Work on this subject, and on annulus experiments with non-axisymmetric thermal heating, will continue. The comparison of GEOSIM's predictions will result from the Spacelab 3 GFFC experiments continued over the past year, on a 'back-burner' basis. At this point, the study (in the form of a draft of a journal article) is nearly completed. The results from GEOSIM compared very well with the experiments, and the use of the model allows the demonstration of flow mechanics that were not possible with the experimental data. For example, animation of the model output shows that the forking of the spiral bands is a transient phenomenon, due to the differential east-west propagation of convection bands from different latitudes

    Surface control system for the 15 meter hoop-column antenna

    Get PDF
    The 15-meter hoop-column antenna fabricated by the Harris Corporation under contract to the NASA Langley Research Center is described. The antenna is a deployable and restowable structure consisting of a central telescoping column, a 15-meter-diameter folding hoop, and a mesh reflector surface. The hoop is supported and positioned by 48 quartz cords attached to the column above the hoop, and by 24 graphite cords from the base of the antenna column. The RF reflective surface is a gold plated molybdenum wire mesh supported on a graphite cord truss structure which is attached between the hoop and the column. The surface contour is controlled by 96 graphite cords from the antenna base to the rear of the truss assembly. The antenna is actually a quadaperture reflector with each quadrant of the surface mesh shaped to produce an offset parabolic reflector. Results of near-field and structural tests are given. Controls structures and electromagnetics interaction, surface control system requirements, mesh control adjustment, surface control system actuator assembly, surface control system electronics, the system interface unit, and control stations are discussed

    Decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation

    Get PDF
    We study the decuplet baryon magnetic moments in a QCD-based quark model beyond quenched approximation. Our approach for unquenching the theory is based on the heavy baryon perturbation theory in which the axial couplings for baryon - meson and the meson-meson-photon couplings from the chiral perturbation theory are used together with the QM moment couplings. It also involves the introduction of a form factor characterizing the structure of baryons considered as composite particles. Using the parameters obtained from fitting the octet baryon magnetic moments, we predict the decuplet baryon magnetic moments. The Ω−\Omega^- magnetic moment is found to be in good agreement with experiment: μΩ−\mu_{\Omega^-} is predicted to be −1.97μN-1.97 \mu_N compared to the experimental result of (−-2.02 ±\pm 0.05) μN\mu_N.Comment: 19 pages, 2 figure
    • …
    corecore