We demonstrate that demographic noise can induce persistent spatial pattern
formation and temporal oscillations in the Levin-Segel predator-prey model for
plankton-herbivore population dynamics. Although the model exhibits a Turing
instability in mean field theory, demographic noise greatly enlarges the region
of parameter space where pattern formation occurs. To distinguish between
patterns generated by fluctuations and those present at the mean field level in
real ecosystems, we calculate the power spectrum in the noise-driven case and
predict the presence of fat tails not present in the mean field case. These
results may account for the prevalence of large-scale ecological patterns,
beyond that expected from traditional non-stochastic approaches.Comment: Revised version. Supporting simulation at:
http://guava.physics.uiuc.edu/~tom/Netlogo