2,497 research outputs found

    PAH Formation in O-rich Planetary Nebulae

    Full text link
    Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae towards the Galactic Bulge. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around such objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. In this work, using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised emission from the [SIV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionised material is mostly present in the inner parts of these tori, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.Comment: 14, accepted for publication in the MNRAS Journa

    Disk evaporation in a planetary nebula

    Full text link
    We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year eclipse event of the central star has been attributed to a dust disk) using HST imaging and VLT spectroscopy, both long-slit and integral field. The central cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density core is detected, with radius less than 250 AU, interpreted as a rotating gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be the source of the slow wind. The central star is a source of a very fast wind (1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an eccentric binary. M 2-29 presents a crucial point in disk evolution, where ionization causes the gas to be lost, leaving a low-mass dust disk behind.Comment: 11 pages, accepted for publication in "Astronomy and Astrophysics

    Gas and dust from solar metallicity AGB stars

    Get PDF
    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M8.5 M1~M_{\odot} - 8.5~M_{\odot}. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass 3.5 M\ge 3.5~M_{\odot} experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than 3×105\sim 3\times 10^5 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low mass stars with 1.5 MM3 M1.5~M_{\odot} \le M \le 3~M_{\odot} become carbon stars. During the final phases the C/O ratio grows to 3\sim 3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.Comment: 27 pages, 24 figures; accepted for publication in MNRA

    The very fast evolution of Sakurai's object

    Full text link
    V4334 Sgr (a.k.a. Sakurai's object) is the central star of an old planetary nebula that underwent a very late thermal pulse a few years before its discovery in 1996. We have been monitoring the evolution of the optical emission line spectrum since 2001. The goal is to improve the evolutionary models by constraining them with the temporal evolution of the central star temperature. In addition the high resolution spectral observations obtained by X-shooter and ALMA show the temporal evolution of the different morphological components.Comment: 2 pages, 2 figures to appear in the Proceedings of the IAU Symp. 323: "Planetary nebulae: Multi-wavelength probes of stellar and galactic evolution". Eds. X.-W. Liu, L. Stanghellini and A. Karaka

    Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    Get PDF
    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events

    Early Science with the Large Millimetre Telescope: Molecules in the Extreme Outflow of a proto-Planetary Nebula

    Get PDF
    Extremely high velocity emission likely related to jets is known to occur in some proto-Planetary Nebulae. However, the molecular complexity of this kinematic component is largely unknown. We observed the known extreme outflow from the proto-Planetary Nebula IRAS 16342-3814, a prototype water fountain, in the full frequency range from 73 to 111 GHz with the RSR receiver on the Large Millimetre Telescope. We detected the molecules SiO, HCN, SO, and 13^{13}CO. All molecular transitions, with the exception of the latter are detected for the first time in this source, and all present emission with velocities up to a few hundred km s1^{-1}. IRAS 16342-3814 is therefore the only source of this kind presenting extreme outflow activity simultaneously in all these molecules, with SO and SiO emission showing the highest velocities found of these species in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component with a FWHM \sim 700 km s1^{-1}. The extreme outflow gas consists of dense gas (nH2>_{\rm H_2} > 104.8^{4.8}--105.7^{5.7} cm3^{-3}), with a mass larger than \sim 0.02--0.15 M_{\odot}. The relatively high abundances of SiO and SO may be an indication of an oxygen-rich extreme high velocity gas.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    First release of the IPHAS catalogue of new extended planetary nebulae

    Get PDF
    Date of Acceptance: 30/06/2014We present the first results of our search for new, extended planetary nebulae (PNe) based on careful, systematic, visual scrutiny of the imaging data from the Isaac Newton Telescope Photometric Ha Survey of the Northern Galactic plane (IPHAS). The newly uncovered PNe will help to improve the census of this important population of Galactic objects that serve as key windows into the late-stage evolution of low- to intermediate-mass stars. They will also facilitate study of the faint end of the ensemble Galactic PN luminosity function. The sensitivity and coverage of IPHAS allows PNe to be found in regions of greater extinction in the Galactic plane and/or those PNe in a more advanced evolutionary state and at larger distances compared to the general Galactic PN population. Using a set of newly revised optical diagnostic diagrams in combination with access to a powerful, new, multiwavelength imaging data base, we have identified 159 true, likely and possible PNe for this first catalogue release. The ability of IPHAS to unveil PNe at low Galactic latitudes and towards the Galactic Anticentre, compared to previous surveys, makes this survey an ideal tool to contribute to the improvement of our knowledge of the whole Galactic PN population.Peer reviewe

    Carbon chemistry in Galactic Bulge Planetary Nebulae

    Get PDF
    Galactic Bulge Planetary Nebulae show evidence of mixed chemistry with emission from both silicate dust and PAHs. This mixed chemistry is unlikely to be related to carbon dredge up, as third dredge-up is not expected to occur in the low mass Bulge stars. We show that the phenomenon is widespread, and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. HST images and UVES spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disk population. We also rule out interaction with the ISM as origin of the PAHs. Instead, a strong correlation is found with morphology, and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at AV1.5A_V\sim 1.5 where small hydrocarbons form from reactions with C+^+, and one at AV4A_V\sim 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-PDR. We conclude that the mixed chemistry phenomenon occurring in the Galactic Bulge Planetary Nebulae is best explained through hydrocarbon chemistry in an UV-irradiated, dense torus.Comment: 13 pages, 10 figue

    Vector field as a quintessence partner

    Full text link
    We derive generic equations for a vector field driving the evolution of flat homogeneous isotropic universe and give a comparison with a scalar filed dynamics in the cosmology. Two exact solutions are shown as examples, which can serve to describe an inflation and a slow falling down of dynamical ``cosmological constant'' like it is given by the scalar quintessence. An attractive feature of vector field description is a generation of ``induced mass'' proportional to a Hubble constant, which results in a dynamical suppression of actual cosmological constant during the evolution.Comment: 14 pages, LaTeX file, iopart class, discussion extended, reference adde
    corecore