247 research outputs found

    Performance of Sensitivity based NMPC Updates in Automotive Applications

    Full text link
    In this work we consider a half car model which is subject to unknown but measurable disturbances. To control this system, we impose a combination of model predictive control without stabilizing terminal constraints or cost to generate a nominal solution and sensitivity updates to handle the disturbances. For this approach, stability of the resulting closed loop can be guaranteed using a relaxed Lyapunov argument on the nominal system and Lipschitz conditions on the open loop change of the optimal value function and the stage costs. For the considered example, the proposed approach is realtime applicable and corresponding results show significant performance improvements of the updated solution with respect to comfort and handling properties.Comment: 6 pages, 2 figure

    Hierarchical distributed model predictive control of interconnected microgrids

    Get PDF

    Input-to-state stability of infinite-dimensional control systems

    Full text link
    We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the input-to-state stability of a system. Then for the case of systems described by abstract equations in Banach spaces we develop two methods of construction of local and global ISS-Lyapunov functions. We prove a linearization principle that allows a construction of a local ISS-Lyapunov function for a system which linear approximation is ISS. In order to study interconnections of nonlinear infinite-dimensional systems, we generalize the small-gain theorem to the case of infinite-dimensional systems and provide a way to construct an ISS-Lyapunov function for an entire interconnection, if ISS-Lyapunov functions for subsystems are known and the small-gain condition is satisfied. We illustrate the theory on examples of linear and semilinear reaction-diffusion equations.Comment: 33 page

    Nominal model predictive control

    Get PDF
    5 p., to appear in Encyclopedia of Systems and Control, Tariq Samad, John Baillieul (eds.)International audienceModel Predictive Control is a controller design method which synthesizes a sampled data feedback controller from the iterative solution of open loop optimal control problems.We describe the basic functionality of MPC controllers, their properties regarding feasibility, stability and performance and the assumptions needed in order to rigorously ensure these properties in a nominal setting

    Lazy Abstraction-Based Controller Synthesis

    Full text link
    We present lazy abstraction-based controller synthesis (ABCS) for continuous-time nonlinear dynamical systems against reach-avoid and safety specifications. State-of-the-art multi-layered ABCS pre-computes multiple finite-state abstractions of varying granularity and applies reactive synthesis to the coarsest abstraction whenever feasible, but adaptively considers finer abstractions when necessary. Lazy ABCS improves this technique by constructing abstractions on demand. Our insight is that the abstract transition relation only needs to be locally computed for a small set of frontier states at the precision currently required by the synthesis algorithm. We show that lazy ABCS can significantly outperform previous multi-layered ABCS algorithms: on standard benchmarks, lazy ABCS is more than 4 times faster

    Model order reduction approaches for infinite horizon optimal control problems via the HJB equation

    Full text link
    We investigate feedback control for infinite horizon optimal control problems for partial differential equations. The method is based on the coupling between Hamilton-Jacobi-Bellman (HJB) equations and model reduction techniques. It is well-known that HJB equations suffer the so called curse of dimensionality and, therefore, a reduction of the dimension of the system is mandatory. In this report we focus on the infinite horizon optimal control problem with quadratic cost functionals. We compare several model reduction methods such as Proper Orthogonal Decomposition, Balanced Truncation and a new algebraic Riccati equation based approach. Finally, we present numerical examples and discuss several features of the different methods analyzing advantages and disadvantages of the reduction methods
    corecore