We investigate feedback control for infinite horizon optimal control problems
for partial differential equations. The method is based on the coupling between
Hamilton-Jacobi-Bellman (HJB) equations and model reduction techniques. It is
well-known that HJB equations suffer the so called curse of dimensionality and,
therefore, a reduction of the dimension of the system is mandatory. In this
report we focus on the infinite horizon optimal control problem with quadratic
cost functionals. We compare several model reduction methods such as Proper
Orthogonal Decomposition, Balanced Truncation and a new algebraic Riccati
equation based approach. Finally, we present numerical examples and discuss
several features of the different methods analyzing advantages and
disadvantages of the reduction methods