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Abstract In this chapter, we give a survey of recent results on approximate optimal-
ity and stability of closed loop trajectories generated by model predictive control
(MPC). Both stabilizing and economic MPC are considered and both schemes with
and without terminal conditions are analyzed. A particular focus of the chapter is
to highlight the role dynamic programming plays in this analysis. As we will see,
dynamic programming arguments are ubiquitous in the analysis of MPC schemes.

1 Introduction

Model Predictive Control (MPC), also known as Receding Horizon Control, is one
of the most successful modern control techniques, both regarding its popularity in
academics and its use in industrial applications [6, 10, 14, 28]. In MPC, the con-
trol input is synthesized via the repeated solution of finite horizon optimal control
problems on overlapping horizons. Among the most fundamental properties to be
investigated when analyzing MPC schemes are the stability and (approximate) opti-
mality properties of the closed loop solutions generated by MPC. One interpretation
of MPC is that an infinite horizon optimal control problem is split up into the re-
peated solution of auxiliary finite horizon problems [12].

Dynamic Programming (DP) is one of the fundamental mathematical techniques
for dealing with optimal control problems [4, 5]. It provides a rule to split up a
high (possibly infinite) dimensional optimization problem over a long (possibly in-
finite) time horizon into auxiliary optimization problems on shorter horizons, which
are much easier to solve. While at a first glance this appears similar to the pro-
cedure just described for MPC, the approach is different, in the sense that in DP
the exact information about the future of the optimal trajectories — by means of
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the corresponding optimal value function — is included in the auxiliary problem.
Thus, it provides a characterization of the exact solution, at the expense that the
auxiliary problems are typically difficult to formulate and the number of auxiliary
problems becomes huge — the (in)famous “curse of dimensionality”. In MPC, the
future information is only approximated (for schemes with terminal conditions) or
even completely disregarded (for schemes without terminal conditions). This makes
the auxiliary problems easy to formulate and to solve and keeps the number of these
problems low, but now at the expense that it does not yield an exact optimal solution
of the original problem anymore.

However, it may still be possible that the solution trajectories generated by MPC
are stable and approximately optimal, and the key for proving such statements is
to make sure that the neglected future information only slightly affects the solu-
tion. The present chapter presents a survey of a selection of results in this direction
and in particular shows that ideas from dynamic programming are essential for this
purpose. As we will show, dynamic programming methods can be used for estimat-
ing near optimal performance under suitable conditions on the future information
(Proposition 6 and Theorem 15 are examples for such statements) but also for en-
suring that the future information satisfies these conditions (as, e.g., in Proposition
8 or Lemma 14(ii)). Moreover, dynamic programming naturally provides ways to
derive stability or convergence from optimality via Lyapunov functions arguments,
as in Proposition 3.

The chapter is organized as follows. In Section 2 we describe the setting and the
MPC algorithm we consider in this chapter. Section 3 collects the results from dy-
namic programming we will need in the sequel. Section 4 then presents results for
stabilizing MPC, in which the stage cost penalizes the distance to a desired equi-
librium. Both schemes with and without terminal conditions are discussed. Section
5 extends this analysis to MPC schemes with more general stage costs, which is
usually referred to as economic MPC. Section 6 concludes the chapter.

2 Setting, definitions and notation

In this chapter we consider discrete time optimal control problems of the form

Minimize JN(x0,u) with respect to the control sequence u, (1)

where N ∈ N∞ := N∪{∞} and

JN(x0,u) =
N−1

∑
k=0

`(x(k),u(k)),

subject to the dynamics and the initial condition

x(k+1) = f (x(k),u(k)), x(0) = x0 (2)
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and the combined state and input constraints

(x(k),u(k)) ∈ Y ∀k = 0, . . . ,N−1 and x(N) ∈ X (3)

for all k ∈ N for which the respective values are defined. Here Y ⊂ X ×U is the
constraint set, X and U are the the state and input value set, respectively, and
X := {x ∈ X |∃u ∈ U with (x,u) ∈ Y} is the state constraint set. The sets X and
U are metric spaces with metrics dX (·, ·) and dU (·, ·). Because there is no danger
of confusion we usually omit the indices X and U in the metrics. We denote the
solution of (2) by xu(k,x0). Moreover, for the distance of a point x ∈ X to another
point y ∈ X we use the short notation |x|y := d(x,y).

For x0 ∈ X and N ∈ N we define the set of admissible control sequences as

UN(x0) := {u ∈UN |(xu(k,x0),u(k)) ∈ Y ∀k = 0, . . . ,N−1 and xu(N,x0) ∈ X}

and
U∞(x0) := {u ∈U∞ |(xu(k,x0),u(k)) ∈ Y ∀k ∈ N}

Since feasibility issues are not the topic of this chapter, we make the simplifying
assumption that UN(x0) 6= /0 for all x0 ∈X and all N ∈N∞. If desired, this assumption
can be avoided using the techniques from, e.g., [9], [14, Chapter 7], [20, Chapter 5],
or [27].

Corresponding to the optimal control problem (1) we define the optimal value
function

VN(x0) := inf
u∈UN(x0)

J(x0,u)

and we say that a control sequence u?N ∈ UN(x0) is optimal for initial value x0 ∈ X
if J(x0,u?N) =VN(x0) holds.

It is often desirable to solve optimal control problems with infinite horizon
N = ∞, for instance because the control objective under consideration naturally
leads to an infinite horizon problem (like stabilization or tracking problems) or be-
cause an optimal control is needed for an indefinite amount of time (as in many
regulation problems). For such problems the optimal control is usually desired in
feedback form, i.e., in the form u?N(k) = µ(x(k)) for a feedback map µ : X→ U.
Except for special cases like linear quadratic problems without constraints, com-
puting infinite horizon optimal feedback laws is in general a very difficult task. On
the other hand, very accurate approximations to optimal control sequences u?N for
finite horizon problems, particularly with moderate N, can be computed easily and
fast (sometimes within a few milliseconds), and often also reliably with state-of-the-
art numerical optimization routines, even for problems in which the dynamics (2)
are governed by partial differential equations. The following Receding Horizon or
Model Predictive Control algorithm (henceforth abbreviated by MPC) is therefore
an attractive alternative to solving an infinite horizon optimal control problem.
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Algorithm 1 (Basic Model Predictive Control Algorithm)
(Step 0) Fix a (finite) optimization horizon N ∈ N and set k := 0;

let an initial value xMPC(0) be given
(Step 1) Compute an optimal control sequence u?N of Problem (1) for x0 = xMPC(k)
(Step 2) Define the MPC feedback law value µN(xMPC(k)) := u?N(0)
(Step 3) Set xMPC(k+1) := f (xMPC(k+1),µN(xMPC(k))), k := k+1

and go to (Step 1)

We note that although derived from an open loop optimal control sequence u?N , µN
is indeed a map from X to U , however, it will in general not be given in the form
of an explicit formula. Rather, given xMPC(k), the value µN(xMPC(k)) is obtained by
solving the optimal control problem in Step 1 of Algorithm 1, which is usually done
numerically.

In MPC, one often introduces additional terminal conditions, consisting of a ter-
minal constraint set X0 ⊆ X and a terminal cost F : X0→ R. To this end, the opti-
mization objective JN is modified to

Jtc
N (x,u) =

N−1

∑
k=0

`(x(k),u(k))+F(x(N))

and the last constraint in (3) is tightened to

x(N) ∈ X0.

Moreover, we denote the corresponding space of admissible control sequences by

UN
0 (x0) := {u ∈ UN(x0) |xu(N,x0) ∈ X0}

and the optimal value function by

V tc
N (x0) := inf

u∈UN
0 (x0)

J(x0,u).

Observe that the problem without terminal conditions is obtained for F ≡ 0 and
X0 = X.

Again, a control utc?
N ∈ UN

0 (x0) is called optimal if V tc
N (x0) = Jtc

N (x0,utc?
N ). Due

to the terminal constraints it is in general not guaranteed that UN
0 (x0) 6= /0 for all

x0 ∈ X. We therefore define XN := {x0 ∈ X |UN
0 (x0) 6= /0}. For MPC in which Jtc

N is
minimized in Step 1 we denote the resulting feedback law by µ tc

N . Note that µ tc
N is

defined on XN .
A priori, it is not clear, at all, whether the trajectory xMPC generated by the MPC

algorithm enjoys approximate optimality properties or qualitative properties like
stability. In the remainder of this chapter, we will give conditions under which such
properties can be guaranteed. In order to measure the optimality of the closed loop
trajectory, we introduce its closed loop finite and infinite horizon values
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Jcl
K (x,µN) :=

K−1

∑
k=0

`(xMPC(k),µN(xMPC(k)))

and
Jcl

∞ (x,µN) := limsup
K→∞

Jcl
K (xMPC(0),µN)

where in both cases the initial value xMPC(0) = x is used.

3 Dynamic programming

Dynamic programming is a name for a set of relations between optimal value func-
tions and optimal trajectories at different time instants. In what follows we state
those relations which are important for the remainder of this chapter. For their proofs
we refer to [14, Chapters 3 and 4].

For the finite horizon problem without terminal conditions the following equa-
tions and statements hold for all N ∈ N and all K ∈ N with K ≤ N (using V0(x)≡ 0
in case K = N):

VN(x) = inf
u∈UK(x)

{JK(x,u)+VN−K(xu(K,x))} (4)

If u?N ∈ UN(x) is an optimal control for initial value x and horizon N, then

VN(x) = JK(x,u?N)+VN−K(xu?N
(K,x)) (5)

and

the sequence uK := (u?N(K), . . . ,u?N(N−1)) ∈ UN−K(xu?N
(K,x))

is an optimal control for initial value xu?N
(K,x) and horizon N−K.

(6)

Moreover, for all x ∈ X the MPC feedback law µN satisfies

VN(x) = `(x,µN(x))+VN−1( f (x,µN(x))). (7)

For the finite horizon problem with terminal conditions the following holds for
all N ∈ N and all K ∈ N with K ≤ N (using V tc

0 (x) = F(x) in case K = N):

V tc
N (x) = inf

u∈UK
N−K(x)

{JK(x,u)+V tc
N−K(xu(K,x))}, (8)

where UK
N−K(x0) := {u ∈UK(x0) |xu(N,x0) ∈XN−K}. If utc?

N ∈UN
0 (x) is an optimal

control for initial value x and horizon N, then

V tc
N (x) = JK(x,utc?

N )+V tc
N−K(xutc?

N
(K,x)) (9)

and
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the sequence utc
K := (utc?

N (K), . . . ,utc?
N (N−1)) ∈ UN−K(xutc?

N
(K,x))

is an optimal control for initial value xutc?
N
(K,x) and horizon N−K.

(10)

Moreover, for all x ∈ X the MPC feedback law µ tc
N satisfies

V tc
N (x) = `(x,µ tc

N (x))+V tc
N−1( f (x,µ tc

N (x))). (11)

Finally, for the infinite horizon problem the following equations and statements
hold for all K ∈ N:

V∞(x) = inf
u∈UK(x)

{JK(x,u)+V∞(xu(K,x))} (12)

If u?∞ is an optimal control for initial value x and horizon N, then

V∞(x) = JK(x,u?∞)+V∞(xu?∞(K,x)) (13)

and
the sequence uK := (u?∞(K),u?∞(K +1), . . .) ∈ U∞(xu?∞(K,x))
is an optimal control for initial value xu?∞(K,x). (14)

The equations just stated can be used as the basis of numerical algorithms, see,
e.g., [5, 17] and the references therein. Here, however, we rather use them as tools
for the analysis of the performance of the MPC algorithm. Besides the equalities,
above, which refer to the optimal trajectories, we will also need corresponding in-
equalities. These will be used in order to estimate Jcl

K and Jcl
∞ as shown in the fol-

lowing proposition.

Proposition 2 Assume there is function ε : X→ R such that the approximate dy-
namic programming inequality

VN(x)+ ε(x)≥ `(x,µN(x))+VN( f (x,µN(x))) (15)

holds for all x ∈ X. Then for each MPC closed loop solution xMPC and all K ∈ N
the inequality

Jcl
K (xMPC(0),µN)≤VN(xMPC(0))−VN(xMPC(K))+

K−1

∑
k=0

εk (16)

holds for εk = ε(xMPC(k)). If, in addition, ε̂ := limsupK→∞ ∑
K−1
k=0 εk < ∞ and

liminfK→∞ VN(xMPC(K))≥ 0 hold, then also

Jcl
∞ (xMPC(0),µN)≤VN(xMPC(0))+ ε̂

holds. The same statements are true when VN and µN are replaced by their terminal
conditioned counterparts V tc

N and µ tc
N , respectively.

Proof. Observing that xMPC(k+ 1) = f (x,µN(x)) for x = xMPC(k) and using (15)
with this x we have
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Jcl
K (xMPC(0),µN) =

K−1

∑
k=0

`(xMPC(k),µN(xMPC(k)))

≤
K−1

∑
k=0

[VN(xMPC(k))−VN(xMPC(k+1))+ εk]

= VN(xMPC(0))−VN(xMPC(K))+
K−1

∑
k=0

εk,

which shows the first claim. The second claim follows from the first by taking the
upper limit for K→ ∞. The proof for the terminal conditioned case is identical. ut

4 Stabilizing MPC

Using the dynamic programming results just stated, we will now derive estimates
for Jcl

∞ in the case of stabilizing MPC. Stabilizing MPC refers to the case in which
the stage cost ` penalizes the distance to a desired equilibrium. More precisely, let
(x∗,u∗) ∈ Y be an equilibrium, i.e., f (x∗,u∗) = x∗. Then throughout this section we
assume that there is α1 ∈K∞ such that1 ` satisfies

`(x∗,u∗) = 0 and `(x,u)≥ α1(|x|x∗) (17)

for all x ∈ X. Moreover, for the terminal cost F we assume

F(x)≥ 0 for all x ∈ X0. (18)

We note that (18) trivially holds in case no terminal cost is used, i.e., if F ≡ 0.
The purpose of this choice of ` is to force the optimal trajectories — and thus

hopefully also the MPC trajectories — to converge to x∗. The following proposition
shows that this hope is justified under suitable conditions, where the approximate
dynamic programming inequality (15) plays a pivotal role.

Proposition 3 Let the assumptions of Proposition 2, (17) and (18) (in case of ter-
minal conditions) hold with ε(x) ≤ ηα1(|x|x∗) for all x ∈ X and some η < 1. Then
xMPC(k)→ x∗ as k→ ∞.

Proof. We first observe that the assumptions imply VN(x) ≥ 0 or V tc
N (x) ≥ 0, re-

spectively. We continue the proof for VN , the proof for V tc
N is identical. Assume

xMPC(k) 6→ x∗, i.e., there are δ > 0 and a sequence kp→ ∞ with |xMPC(kp)|x∗ ≥ δ

for all p ∈ N. Then by induction over (15) with x = xMPC(k) we get

1 The space K∞ consists of all functions α : [0,∞)→ [0,∞) with α(0) = 0 which are continuous,
strictly increasing and unbounded.
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VN(xMPC(K)) ≤ VN(xMPC(0))−
K−1

∑
k=0

[
`(xMPC(k),µN(xMPC(k)))− ε(xMPC(k))

]
≤ VN(xMPC(0))−

K−1

∑
k=0

(1−η)α1(|xMPC(k)|x∗)

≤ VN(xMPC(0))− ∑
p∈N

kp≤K−1

(1−η)α1(|xMPC(kp)|x∗)

≤ VN(xMPC(0))−#{p ∈ N |kp ≤ K}(1−η)α1(δ ).

Now as K → ∞ the number #{p ∈ N |kp ≤ K} grows unboundedly, which implies
that VN(xMPC(K))< 0 for sufficiently large K which contradicts the non-negativity
of VN . ut

We remark that under additional conditions (essentially appropriate upper bounds
on VN or V tc

N , respectively), asymptotic stability of x∗ can also be established, see,
e.g., [14, Theorem 4.11] or [28, Theorem 2.22].

4.1 Terminal conditions

In this section we use the terminal conditions in order to ensure that the approximate
dynamic programming inequality (15) holds with ε(x) ≤ 0 and V tc

N (x) ≥ 0. Then
Proposition 2 applies and yields Jcl

∞ (xMPC(0),µ tc
N ) ≤ V tc

N (xMPC(0)) while Proposi-
tion 3 implies xMPC(k)→ x∗. The key for making this approach work is the following
assumption.

Assumption 4 For each x ∈ X there is ux ∈U with (x,ux) ∈ Y, f (x,ux) ∈ X and

`(x,ux)+F( f (x,ux))≤ F(x).

While conditions like Assumption 4 were already developed in the 1990s, e.g., in
[7, 22, 25], it was the paper [23] published in 2000 which established this condition
as the standard assumption for stabilizing MPC with terminal conditions. The par-
ticular case X= {x∗} was investigated in detail already in the 1980s in the seminal
paper [19].

Theorem 5. Consider the MPC scheme with terminal conditions satisfying (17),
(18) and Assumption 4. Then the inequality Jcl

∞ (x,µ tc
N )≤V tc

N (x) and the convergence
xMPC(k)→ x∗ for k→ ∞ hold for all x ∈ XN and the closed loop solution xMPC(k)
with xMPC(0) = x.

Proof. As explained before the theorem, it is sufficient to prove (15) with ε(x)≤ 0
and V tc

N (x)≥ 0; then Propositions 2 and 3 yield the assertions. The inequalityV tc
N (x)≥
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0 is immediate from (17) and (18). For proving (15) with ε(x) ≤ 0, using ux from
Assumption 4 with x = xu(N−1,x0) we get

V tc
N−1(x0) = inf

u∈UN−1
0 (x0)

N−2

∑
k=0

`(xu(k,x0),u(k))+F(xu(N−1,x0))

≥ inf
u∈UN−1

0 (x0)

N−2

∑
k=0

`(xu(k,x0),u(k))+ `(x,ux)+F( f (x,ux))

≥ inf
u∈UN

0 (x0)

N−1

∑
k=0

`(xu(k,x0),u(k))+F(xu(N,x0)) = V tc
N (x0)

Inserting this inequality for x0 = f (x,µ tc
N (x)) into (11) we obtain

V tc
N (x) = `(x,µ tc

N (x))+V tc
N−1( f (x,µ tc

N (x)))≥ `(x,µ tc
N (x))+V tc

N ( f (x,µ tc
N (x)))

and thus (15) with ε ≡ 0. ut

A drawback of the inequality Jcl
∞ (x,µ tc

N ) ≤ V tc
N (x) is that it is in general quite

difficult to give estimates for V tc
N (x). Under reasonable assumptions it can be shown

that V tc
N (x)→V∞(x) for N→∞ [14, Section 5.4]. This implies that the MPC solution

is near optimal for the infinite horizon problem for N sufficiently large. However, it
is in general difficult to make statements about the speed of convergence of V tc

N (x)→
V∞(x) as N → ∞ and thus to estimate the length of the horizon N which is needed
for a desired degree of suboptimality.

4.2 No terminal conditions

The decisive property induced by Assumption 4 and exploited in the proof of Theo-
rem 5 is the fact that V tc

N−1(x0)≥V tc
N (x0). Without this inequality, (11) implies that

(15) with ε ≡ 0 cannot in general be satisfied. Without terminal conditions and under
the condition (17) it is, however, straightforward to see that the opposite inequality
V tc

N−1(x0) ≤ V tc
N (x0) holds, where in most cases this inequality is strict. This means

that without terminal conditions we need to work with positive ε . The following
proposition, which was motivated by a similar “relaxed dynamic programming” in-
equality used in [21], introduces a variant of Proposition 2 which we will use for
this purpose.

Proposition 6 Assume there is a constant α ∈ (0,1] such that the relaxed dynamic
programming inequality

VN(x)≥ α`(x,µN(x))+VN( f (x,µN(x))) (19)

holds for all x ∈ X. Then for each MPC closed loop solution xMPC and all K ∈ N
the inequality
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Jcl
∞ (xMPC(0),µN)≤V∞(xMPC(0))/α

and, if additionally (17) holds, the convergence xMPC(k)→ x∗ for k→ ∞ hold.

Proof. Applying Proposition 2 with ε(x) = (1−α)`(x,µN(x)) yields

Jcl
K (xMPC(0),µN) ≤ VN(xMPC(0))−VN(xMPC(K))

+ (1−α)
K−1

∑
k=0

`(xMPC(k),µN(xMPC(k)))︸ ︷︷ ︸
=Jcl

K (xMPC(0),µN)

.

Using VN ≥ 0 this implies αJcl
K (xMPC(0),µN) ≤ VN(xMPC(0)) which implies the

first assertion by letting K→ ∞ and dividing by α . The convergence xMPC(k)→ x∗
follows from Proposition 3. ut

A simple condition under which we can guarantee that (19) holds is given in the
following assumption.

Assumption 7 There are constants γk > 0, k ∈ N with supk∈N γk < ∞ and

Vk(x)≤ γk inf
u∈U,(x,u)∈Y

`(x,u).

A sufficient condition for Assumption 7 to hold is that ` is a polynomial satisfy-
ing (17) and the system can be controlled to x∗ exponentially fast. However, via
an appropriate choice of ` Assumption 7 can also be satisfied if the system is not
exponentially controllable, see, e.g., [14, Example 6.7].

The following theorem, taken with modifications from [29], shows that Assump-
tion 7 implies (19).

Proposition 8 Consider the MPC scheme without terminal conditions satisfying
Assumption 7. Then (19) holds with α = 1− (γ2−1)(γN−1)∏

N−1
k=0

(
γk−1

γk

)
.

Proof. First note that for x = x∗ (19) always holds because all expressions vanish.
For x 6= x∗, we consider the MPC solution xMPC(·) with xMPC(0) = x, abbreviate
λk = `(xu?N

(k,x),u?N(k)) with u?N denoting the optimal control for initial value x0 = x,
and ν =VN( f (x,µN(x))) =VN(xMPC(1)). Then (19) becomes

N−1

∑
k=0

λk−ν ≥ αλ0 (20)

We prove the theorem by showing the inequality

λN−1 ≤ (γN−1)
N−1

∏
k=2

(
γk−1

γk

)
λ0 (21)
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for all feasible λ0, . . . ,λN−1. From this (20) follows since the dynamic programming
equation (4) with x = xMPC(1) and K = N−2 implies

ν ≤
N−2

∑
n=1

`(xu?N
(n,x),u?N(n))+V2(xu?N

(N−1,x))≤
N−2

∑
n=1

λn + γ2λN−1

and thus (21), γ2 ≥ 1 and λ0 = 1 yield

N−1

∑
n=0

λn−ν ≥ λ0 +(1− γ2)λN−1 ≥ λ0− (γ2−1)(γN−1)
N−1

∏
k=2

(
γk−1

γk

)
λ0 = αλ0.

i.e., (20). In order to prove (21), we start by observing that since uK := (u?N(K), . . .,
u?N(N− 1)) is an optimal control for initial value xu?N

(K,x) and horizon N−K, we
obtain ∑

N−1
k=p λk =VN−p(xu?N

(p+1))≤ γN−pλp, which implies

N−1

∑
k=p+1

λk ≤ (γN−p−1)λp (22)

for p = 0, . . . ,N−2. From this we can conclude

λp +
N−1

∑
k=p+1

λk ≥
∑

N−1
k=p+1 λk

γN−p−1
+

N−1

∑
k=p+1

λk =
γN−p

γN−p−1

N−1

∑
k=p+1

λk.

Using this inequality inductively for p = 1, . . . ,N−2 yields

N−1

∑
k=1

λk ≥
N−2

∏
k=1

(
γN−k

γN−k−1

)
λN−1 =

N−1

∏
k=2

(
γk

γk−1

)
λN−1.

Using (22) for p = 0 we then obtain

(γN−1)λ0 ≥
N−1

∑
k=1

λk ≥
N−1

∏
k=2

(
γk

γk−1

)
λN−1

which implies (21). ut

This proposition immediately leads to the following theorem.

Theorem 9. Consider the MPC scheme without terminal conditions satisfying As-
sumption 7. Then for all sufficiently large N ∈N the inequality Jcl

∞ (x,µN)≤V∞(x)/α

and the convergence xMPC(k)→ x∗ for k→∞ hold for all x ∈X and the closed loop
solution xMPC(k) with xMPC(0) = x, with α from Proposition 8.

Proof. Since γ∞ := supk∈N γk < ∞ it follows that (γk−1)/γk ≤ (γ∞−1)/γ∞ < 1 for
all k ∈ N, implying that α from Proposition 8 satisfies α ∈ (0,1] for sufficiently
large N. For these N the assertion follows from Proposition 6. ut
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We note that α from Proposition 8 is not optimal. In [15] (see also [30] and [14,
Chapter 6]) the optimal bound

α = 1−
(γN−1)∏

N
k=2(γk−1)

∏
N
k=2 γk−∏

N
k=2(γk−1)

(23)

is derived, however, at the expense of a much more involved proof than that of
Proposition 8. The difference between the two bounds can be illustrated if we as-
sume γk = γ for all k ∈ N and compute the minimal N ∈ N such that α > 0 holds,
i.e., the minimal N for which Theorem 9 ensures the convergence xMPC(k)→ x∗. For
α from Proposition 8 we obtain the condition N > 2+2ln(γ−1)/(lnγ− ln(γ−1))
while for α from (23) we obtain N > 2+ ln(γ−1)/(lnγ− ln(γ−1)). The optimal
α hence reduces the estimate for N roughly by a factor of 2.

The analysis can be extended to the situation in which α in (19) cannot be found
for all x ∈X. In this case, one can proceed similarly as in the discussion after Theo-
rem 15, below, in order to obtain practical asymptotic stability, i.e., inequality (34),
on bounded subsets of X.

5 Economic MPC

Economic MPC has become the common name for MPC schemes in which the
stage cost ` does not penalize the distance to an equilibrium x∗ which was deter-
mined a priori. Rather, ` models economic objectives, like high output, low energy
consumption etc. or a combination thereof.

For such general ` many of the arguments from the previous section do not work
for several reasons. First, the cost JN and thus the optimal value function VN is not
necessarily nonnegative, a fact which was exploited in several places in the proofs
in the last section. Second, the infinite sum in the infinite horizon objective need not
converge and thus it may not make sense to talk about infinite horizon performance.
Finally, optimal trajectories need not stay close or converge to an equilibrium, again
a fact that was used in various places in the last section.

A systems theoretic property which effectively serves as a remedy for all these
difficulties is contained in the following definition.

Definition 10 (Strict Dissipativity and Dissipativity) We say that an optimal con-
trol problem with stage cost ` is strictly dissipative at an equilibrium (xe,ue) ∈ Y
if there exists a storage function λ : X→ R bounded from below and satisfying
λ (xe) = 0, and a function ρ ∈K∞ such that for all (x,u) ∈ Y the inequality

`(x,u)− `(xe,ue)+λ (x)−λ ( f (x,u))≥ ρ(|x|xe) (24)

holds. We say that an optimal control problem with stage cost ` is dissipative at
(xe,ue) if the same conditions hold with ρ ≡ 0.
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We note that the assumption λ (xe) = 0 can be made without loss of generality be-
cause adding a constant to λ does not invalidate (24).

The observation that strict dissipativity is the “right” property in order to analyze
economic MPC schemes was first made by Diehl, Amrit and Rawlings in [8], where
strict duality, i.e., strict dissipativity with a linear storage function, was used. The
extension to the nonlinear notion of strict dissipativity was then made by Angeli and
Rawlings in [3]. Although recent studies show that for certain classes of systems this
property can be further (slightly) relaxed (see [26]), here we work with this condi-
tion because it provides a mathematically elegant way for dealing with economic
MPC.

Remark 11 Strict dissipativity implies several important properties:

(i) The equilibrium (xe,ue) ∈Y from Definition 10 is a strict optimal equilibrium in
the sense that `(xe,ue) < `(x,u) for all other admissible equilibria of f , i.e., all
other (x,u) ∈ Y with f (x,u) = x. This follows immediately from (24).

(ii) The optimal equilibrium xe has the turnpike property, i.e., the following holds:
For each δ > 0 there exists σδ ∈L such that2 for all N,P ∈ N, x ∈ X and u ∈
UN(x) with Juc

N (x,u) ≤ N`(xe,ue)+ δ , the set Q(x,u,P,N) := {k ∈ {0, . . . ,N−
1}| |xu(k,x)|xe ≥σδ (P)} has at most P elements. A proof of this fact can be found,
e.g., in [14, Proposition 8.15]. The same property holds for all near optimal
trajectories of the infinite horizon problem, provided it is well defined, cf. [14,
Proposition 8.18].

(iii) If we define the modified or rotated cost ˜̀(x,u) := `(x,u)− `(xe,ue) + λ (x)−
λ ( f (x,u)), then this modified cost satisfies (17), i.e., the basic property we ex-
ploited in the previous section.

The third property enables us to use the optimal control problem with modified
cost ˜̀ as an auxiliary problem in our analysis. The way this auxiliary problem is used
crucially depends on whether we use terminal conditions or not. We start with the
case with terminal conditions. Throughout this section, we assume that all functions
under consideration are continuous in xe.

5.1 Terminal conditions

For the economic MPC problem with terminal conditions we make exactly the same
assumption on the terminal constraint set X0 and the terminal cost F as in the stabi-
lizing case, i.e., we again use Assumption 4. We assume without loss of generality
that F(xe) = 0, which implies that F may attain negative values, because ` may be
negative, too.

2 The space L contains all functions σ : [0,∞)→ [0,∞) which are continuous and strictly decreas-
ing with limt→∞ σ(t) = 0.
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Now the main trick — taken from [1] — lies in the fact that we introduce an
adapted terminal cost for the problem with the modified cost ˜̀. To this end, we de-
fine the terminal cost F̃(x) := F(x)+ λ (x). We denote the cost functional for the
modified problems without and with terminal conditions by J̃N and J̃tc

N , respectively,
and the corresponding optimal value functions by ṼN and Ṽ tc

N . Then a straightfor-
ward computation reveals that

J̃tc
N (x,u) = Jtc

N (x,u)+λ (x)−N`(xe,ue), (25)

which means that the original and the modified optimization objective only differ in
terms which do not depend on u. Hence, the optimal trajectories corresponding to
Ṽ tc

N and V tc
N coincide and the MPC scheme using the modified costs ˜̀ and F̃ yields

exactly the same closed loop trajectories as the scheme using ` and F .
One easily sees that F̃ and ˜̀ also satisfy Assumption 4, i.e., that for each x ∈ X0

there is ux ∈U with (x,ux) ∈ Y, f (x,ux) ∈ X0 and

˜̀(x,ux)+ F̃( f (x,ux))≤ F̃(x) (26)

if ` and F satisfy this property.
Moreover, if F̃ is bounded on X0, then (26) implies F̃(x) ≥ 0 for all x ∈ X0.

In order to see this, assume F(x0) < 0 for some x0 ∈ X0 and consider the control
sequence defined by u(k) = ux with ux from (26) for x = xu(k,x0). Then, ˜̀≥ 0
implies F(xu(k,x)) ≤ F(x0) < 0 for all k ∈ N. Moreover, similar as in the proof
of Theorem (3), the fact that ˜̀ satisfies (17) implies that xu(k,x0)→ xe, because
otherwise F(xu(k,x0))→ −∞ which contradicts the boundedness of F . But then
continuity of F in xe implies

F(xe) = lim
k→∞

F(xu(k,x0))≤ F(x0)< 0

which contradicts F(xe) = 0. Hence F̃(x) ≥ 0 follows for all x ∈ X0 (for a more
detailed proof see [14, Proof of Theorem 8.13]).

As a consequence, the problem with the modified costs ˜̀ and F̃ satisfies all the
properties we assumed for the results in Section 4.1. Hence, Theorem 5 applies and
yields the convergence xMPC(k)→ xe and the performance estimate

J̃cl
∞ (x,µ tc

N )≤ Ṽ tc
N (x).

As in the stabilizing case, under suitable conditions we obtain Ṽ tc
N (x)→ Ṽ∞(x) as

N → ∞. However, this only gives an estimate for the modified objective J̃cl
∞ with

stage cost ˜̀ but not for the original objective Jcl
∞ with stage cost `.

In order to obtain an estimate for Jcl
∞ , one can proceed in two different ways:

either one assumes `(xe,ue) = 0 (which can always be achieved by adding `(xe,ue)
to `) and that the infinite horizon problem is well defined, which in particular means
that |V∞(x)| is finite. Then, from the definition of the problems, one sees that the
relations
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J̃cl
∞ (x,µ tc

N ) = Jcl
∞ (x,µ tc

N )− lim
k→∞

λ (xMPC(k))

and

Ṽ∞(x)≤V cl
∞ (x)− lim

k→∞
λ (xu?∞(k,x)) and V∞(x)≤ Ṽ cl

∞ (x)+ lim
k→∞

λ (xũ?∞(k,x))

hold for xMPC(0) = x and ũ?∞ and u?∞ denoting the optimal controls corresponding to
Ṽ∞(x) and V∞(x), respectively.

Now strict dissipativity implies xũ?∞(k,x)→ xe and xu?∞(k,x)→ xe as k→ ∞ (for
details see [14, Proposition 8.18]), moreover, we already know that xMPC(k)→ xe

as k→ ∞. Since λ (xe) = 0 and λ is continuous in xe this implies

Jcl
∞ (x,µ tc

N )→V∞(x)

as N → ∞, i.e., near optimal infinite horizon performance of the MPC closed loop
for sufficiently large N.

The second way to obtain an estimate is to look at Jcl
K (x,µ tc

N ), which avoids set-
ting `(xe,ue) = 0 and making assumptions on |V∞|. However, while xMPC(k)→ xe,
in the economic MPC context — even in the presence of strict dissipativity — the
optimal trajectory xu?N

(k,x) will in general not end near xe, see, e.g., the examples
in [11, 12] or [14, Chapter 8]. Hence, comparing Jcl

K (x,µ tc
N ) and VK(x) will in gen-

eral not be meaningful. However, if for x = xMPC(0) we set δ (k) := |xMPC(k)|xe and
define the class of controls

UK
δ (K)(x) := {u ∈ UK(x) | |xu(K,x)|xe ≤ δ (K)} (27)

then it makes sense to compare Jcl
K (x,µ tc

N ) and infu∈UK
δ (K)

(x) JK(x,u). More precisely,

in [13] (see also [14, Section 8.4]) it was shown that there are error terms δ1(N) and
δ2(K), converging to 0 as N→ ∞ or K→ ∞, respectively, such that the estimate

Jcl
K (x,µ tc

N )≤ inf
u∈UK

δ (K)
(x)

JK(x,u)+δ1(N)+δ2(K) (28)

holds. In other words, among all solutions steering x into the δ (K)-neighborhood of
the optimal equilibrium xe, MPC yields the cheapest one up to error terms vanishing
as K and N become large.

In summary, except for inequality (28) which requires additional arguments, by
using terminal conditions the analysis of economic MPC schemes is not much more
difficult than the analysis of stabilizing MPC schemes. However, in contrast to the
stabilizing case, so far no systematic procedure for the construction of terminal costs
and constraint sets satisfying (26) is known. Hence, it appears attractive to avoid the
use of terminal conditions.
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5.2 No terminal conditions

If we want to avoid the use of terminal conditions, the analysis becomes consider-
ably more involved. The reason is that without terminal conditions the relation (25)
changes to

J̃N(x,u) = JN(x,u)+λ (x)−λ (xu(N,x))−N`(xe,ue). (29)

This means that the difference between JN and J̃N now depends on u and conse-
quently the optimal trajectories do no longer coincide. Moreover, the central prop-
erty exploited in the proof of Proposition 8, whose counterpart in the setting of this
section would be that λN−1 = `(xu?N

(N−1,x),u?N(N−1)) is close to `(xe,ue), is in
general not true for economic MPC, not even for simple examples, see [11, 12] or
[14, Chapter 8]. Hence, we cannot expect the arguments from the stabilizing case to
work.

For these reasons, we have to use different arguments, which are combinations
of arguments found in [11, 12, 18]. To this end we make the following assumptions.

Assumption 12 (i) The optimal control problem is strictly dissipative in the sense
of Definition 10.

(ii) There exist functions γV , γṼ and γλ ∈K∞ as well as ω, ω̃ ∈L such that the
following inequalities hold for all x ∈ X and all N ∈ N∞:

(a) |VN(x)−VN(xe)| ≤ γV (|x|xe)+ω(N)

(b) |ṼN(x)−ṼN(xe)| ≤ γṼ (|x|xe)+ ω̃(N)

(c) |λ (x)−λ (xe)| ≤ γλ (|x|xe)

Part (ii) of this assumption is a uniform continuity assumption in xe. For the optimal
value functions VN and ṼN it can, e.g., be guaranteed by local controllability around
xe, see [11, Theorem 6.4]. We note that this assumption together with the obvious
inequality VN(xe)≤N`(xe,ue) and boundedness of X implies VN(x)≤N`(xe,ue)+δ

with δ = supx∈X γV (|x|xe)+ω(0). Hence, the optimal trajectories have the turnpike
property according to Remark 11(ii).

For writing (in)equalities that hold up to an error term, we use the following
convenient notation: for a sequence of functions aJ : X→ R, J ∈ N, and another
function b : X→ R we write aJ(x) ≈J b(x) if limJ→∞ supx∈X aJ(x)− b(x) = 0 and
we write aJ(x)<∼Jb(x) if limsupJ→∞ supx∈X aJ(x)− b(x) ≤ 0. In words, ≈J means
“= up to terms which are independent of x and vanish as J → ∞”, and <∼J means
the same for ≤.

With these assumptions and notation we can now prove the following rela-
tions. For simplicity of exposition in what follows we limit ourselves to a bounded
state space X. If this is not satisfied, the following considerations can be made for
bounded subsets of X. As we will see, dynamic programming arguments are ubi-
quitous in the following considerations.
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Lemma 13 Let X be bounded. Then under Assumptions 12 the following approxi-
mate equalities hold.

(i) VN(x) ≈S JM(x,u?N)+VN−M(xe) for all M 6∈Q(x,u?N ,P,N)

(ii) VN(xe) ≈S M`(xe,ue)+VN−M(xe) for all M 6∈Q(xe,u?e
N ,P,N)

(iii) ṼN(x) ≈N VN(x)+λ (x)−VN(xe)

Here P∈N is an arbitrary number, S :=min{P,N−M}, u?N is the control minimizing
JN(x,u), u?e

N is the control minimizing JN(xe,u), and Q is the set from Remark 11(ii).
Moreover, (i) and (ii) also apply to the optimal control problem with stage cost ˜̀.

Proof. (i) Observe that using the constant control u≡ ue we can estimate VN(xe)≤
JN(xe,u) = N`(xe,ue). Thus, using Assumption 12 we get JN(x,u?N)≤ N`(xe,ue)+
γV (|x|xe)+ω(N), hence the turnpike property from Remark 11(ii) applies to the op-
timal trajectory with δ = γV (|x|xe)+ω(N). This in particular ensures |xu?N

(M,x)|xe ≤
σδ (P) for all M 6∈Q(x,u?N ,P,N).

Now the dynamic programming equation (5) yields

VN(x) = JM(x,u?N)+VN−M(xu?N
(M,x)).

Hence, (i) holds with remainder terms R1(x,M,N) =VN−M(xu?N
(M,x))−VN−M(xe).

For any P∈N and any M 6∈Q(x,u?N ,P,N) we have |R1(x,M,N)| ≤ γV (|xu?N
(M,x)|xe)

+ω(N−M)≤ γV (σδ (P))+ω(N−M) and thus (i).
(ii) From the dynamic programming equation (4) and u≡ ue we obtain

VN(xe)≤M`(xe,ue)+VN−M(xe).

On the other hand, from (5) we have

VN(xe) = JM(x,u?e
N )+VN−M(xu?e

N
(M,xe))

= J̃M(x,u?e
N )︸ ︷︷ ︸

≥0

−λ (xe)+λ (xu?e
N
(M,xe))+M`(xe,ue)+VN−M(xu?e

N
(M,xe))

≥ VN−M(xe)+M`(xe,ue)+
[
VN−M(xu?e

N
(M,xe))−VN−M(xe)

]
+
[
λ (xu?e

N
(M,xe))−λ (xe)

]
Now since VN−M and λ satisfy Assumption 12(ii) and xu?e

N
(M,xe)≈P xe for all M 6∈

Q(xe,u?e
N ,P,N), we can conclude that the differences in the squared brackets have

values ≈S 0 which shows the assertion.
(iii) Fix x ∈ X and let u?N and ũ?N ∈ UN(x) denote the optimal control minimiz-

ing JN(x,u) and J̃N(x,u), respectively. We note that if the optimal control problem
with cost ` is strictly dissipative then the problem with cost ˜̀ is strictly dissipative,
too, with bounded storage function λ ≡ 0 and same ρ ∈K∞. Moreover, VN(x) ≤
N`(xe,ue) + γV (|x|xe) +ω(N) and ṼN(x) ≤ N ˜̀(xe,ue) + γṼ (|x|xe), since VN(xe) ≤
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N`(xe,ue) and ṼN(xe) = 0. Hence, the turnpike property from Remark 11(ii) applies
to the optimal trajectories for both problems, yielding σδ ∈L and Q(x,u?N ,P,N) for
xu?N

and σ̃
δ̃

and Q̃(x, ũ?N ,P,N) for xũ?N
. For all M 6∈ Q̃(x, ũ?N ,P,N)∪Q(xe,u?e

N ,P,N)
we can estimate

VN(x) ≤ JM(x, ũ?N)+VN−M(xũ?N
(M))

≤ JM(x, ũ?N)+VN−M(xe)+ γV (σ̃δ̃
(P))+ω(N−M)

≤ J̃M(x, ũ?N)−λ (x)+λ (xe)+M`(xe,ue)+VN−M(xe)+ γV (σ̃δ̃
(P))

+ γλ (σ̃δ̃
(P))+ω(N−M)

<∼S ṼN(x)−λ (x)+VN(xe)

for S = min{P,N−M}, where we have applied the dynamic programming equation
(4) in the first inequality, the turnpike property for xũ?N

and Assumption 12 and (29)
in the second and third inequality and (i) applied to ṼN , and (ii) applied to ` in the
last step. Moreover, λ (xe) = 0 and ṼN(xe) = 0 were used.

By exchanging the two optimal control problems and using the same inequalities
as above, we get

ṼN(x)<∼SVN(x)+λ (x)−VN(xe)

for all M 6∈Q(x,u?N ,P,N)∪ Q̃(xe, ũ?e
N ,P,N). Together this implies

ṼN(x)≈S VN(x)+λ (x)−VN(xe)

for all M 6∈Q(x,u?N ,P,N)∪Q̃(x,u?N ,P,N)∪Q(x,u?e
N ,P,N)∪Q̃(xe, ũ?e

N ,P,N) and S=
min{P,N−M}.

Now, choosing P = bN/5c, the union of the four Q-sets has at most 4N/5 el-
ements, hence there exists M ≤ N/5 for which this approximate inequality holds.
This yields S = bN/5c and thus ≈S implies ≈N , which shows (ii). ut

We note that precise quantitative statements can be made for the error terms “hid-
ing” in the≈J-notation. Essentially, these terms depend on the distance between the
optimal trajectories to the optimal equilibrium in the turnpike property, as measured
by the function σδ in Remark 11(ii), and by the functions from Assumption 12. For
details we refer to [14, Chapter 8].

Now, as in the previous section we can proceed in two different ways. Again, the
first way consists in assuming `(xe,ue) = 0 and the infinite horizon problem is well
defined, implying that |V∞(x)| is finite for all x ∈ X. In this case, we can derive the
following additional relations.

Lemma 14 Let X be bounded, let Assumption 12 hold and assume `(xe,ue) = 0.
Then the following approximate equalities hold.

(i) V∞(x) ≈P JM(x,u?∞)+V∞(xe) for all M 6∈Q(x,u?∞,P,∞)

(ii) JM(x,u?∞) ≈S JM(x,u?N) for all M 6∈Q(x,u?N ,P,N)
∪Q(x,u?∞,P,∞).
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Here P ∈ N is an arbitrary number, S := min{P,N −M} and u?∞ and u?N are the
controls minimizing J∞(x,u) and JN(x,u), respectively.

Proof. (i) The infinite horizon dynamic programming equation (13) yields

V∞(x) = JM(x,u?∞)+V∞(xu?∞(M,x)).

Hence, we obtain

V∞(x) = JM(x,u?∞)+V∞(xe)+
[
V∞(xu?∞(M,x))−V∞(xe)

]
.

From the turnpike property in Remark 11(ii) and Assumption 12 for N = ∞ we
obtain that the term in square brackets is ≈P 0 for all M 6∈ Q(x,u?∞,P,∞), which
shows (i).

(ii) The finite horizon dynamic programming equations (4) and (5) imply that
u = u?N minimizes the expression JM(x,u) +VN−M(xu(M,x)). Using the turnpike
property and Assumption 12(ii) for VN this yields

JM(x,u?N)+VN−M(xe)≈S JM(x,u?N)+VN−M(xu?N
(M,x))

≤ JM(x,u?∞)+VN−M(xu?∞(M,x)) ≈S JM(x,u?∞)+VN−M(xe).

for all M 6∈Q(x,u?N ,P,N) and S = min{P,N−M}.
Conversely, the infinite horizon dynamic programming equations (12) and (13)

imply that u?∞ minimizes the expression JM(x,u?∞)+V∞(xu?∞(M,x)). Using the turn-
pike property and Assumption 12(ii) for V∞ this yields

JM(x,u?∞)+V∞(xe) ≈P JM(x,u?∞)+V∞(xu?∞(M,x))

≤ JM(x,u?N)+V∞(xu?N
(M,x)) ≈P JM(x,u?N)+V∞(xe)

for all M 6∈Q(x,u?∞,P,∞). Combining these two approximate inequalities then im-
plies (ii). ut

With these preparations we can state our first theorem on the performance of
economic MPC without terminal conditions.

Theorem 15. Consider the MPC scheme without terminal conditions satisfying As-
sumption 12 and let X be bounded. Then there is δ1 ∈L such that for all x ∈X the
closed loop solution xMPC(k) generated by this scheme with xMPC(0) = x satisfies
the inequality

Jcl
K (x,µN)+V∞(xMPC(K))≤V∞(x)+Kδ1(N) (30)

for all K,N ∈ N.

Proof. We pick x ∈ X and abbreviate x+ := f (x,µN(x)). For the corresponding op-
timal control u?N , the relation (6) yields that u?N(·+1) is an optimal control for initial
value x+ and horizon N−1. Hence, for each M ∈ {1, . . . ,N} we obtain



20 Lars Grüne

`(x,µN(x)) = VN(x)−VN−1(x+) = JN(x,u?N)− JN−1(x+,u?N(·+1))
= JM(x,u?N)− JM−1(x+,u?N(·+1)),

where the last equality follows from the fact that the omitted terms in the sums
defining JM(x,u?N) and JM−1(x+,u?N(·+ 1)) coincide. Using Lemma 14(i) for N, x
and M and for N−1, x+ and M−1, respectively, yields

V∞(x)−V∞(x+) ≈P JM(x,u?∞)+V∞(xe)− JM−1(x+,u?∞)−V∞(xe)

≈P JM(x,u?∞)− JM−1(x+,u?∞).

Putting the two (approximate) equations together and using Lemma 14(ii) yields

`(x,µN(x))≈S V∞(x)−V∞(x+). (31)

for all M ∈ {1, . . . ,N} satisfying M 6∈Q(x,u?N ,P,N)∪Q(x,u?∞,P,∞) and M− 1 6∈
Q(x+,u?N(·+ 1),P,N − 1)∪Q(x+,u?∞(·+ 1),P,∞). Since each of the four Q sets
contains at most P elements, their union contains at most 4P elements and hence if
N > 8P then there is at least one such M with M ≤ N/2.

Thus, choosing P = b(N−1)/8c yields the existence of M ≤ N/2 such that (31)
holds with S = b(N−1)/8c, implying that≈S in (31) can be replaced by≈N . Hence,
the error in (31) can be bounded by δ1(N) for a function δ1 ∈L , yielding

`(x,µN(x))≤V∞(x)−V∞(x+)+δ1(N). (32)

Applying (32) for x = xMPC(k), k = 0, . . . ,K−1, we can then conclude

Jcl
K (x,µN) =

K−1

∑
k=0

`(xMPC(k),µN(xMPC(k)))

≤
K−1

∑
k=0

(
V∞(xMPC(k))−V∞(xMPC(k+1))+δ1(N)

)
≤V∞(x)−V∞(xMPC(K))+Kδ1(N).

This proves the claim. ut

The interpretation of inequality (30) is as follows: If we concatenate the closed loop
trajectory (xMPC(0), . . . ,xMPC(K)) with the infinite horizon optimal trajectory em-
anating from xMPC(K), then the overall cost Jcl

K (x,µN)+V∞(xMPC(K)) is less than
the optimal cost V∞(x) plus the error term Kδ1(N). In other words, for large N the
initial piece of the MPC closed loop trajectory is an initial piece of an approximately
optimal infinite horizon trajectory.

With similar arguments as in the proofs of Lemma 13 and 14 one can also prove
the approximate equation

VN(x)≈N VN−1(x)+ `(xe,ue).
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Using this relation, Lemma 13(iii) and the dynamic programming equation (7), for
x+ = f (x,µN(x)) we obtain

ṼN(x+) ≈N VN(x+)+λ (x+)−VN(xe)

≈N VN−1(x+)+ `(xe,ue)+λ (x+)−VN(xe)

= VN(x)− `(x,µN(x))+ `(xe,ue)+λ (x+)−VN(xe)

≈N ṼN(x)−`(x,µN(x))+ `(xe,ue)+λ (x+)−λ (x)︸ ︷︷ ︸
=− ˜̀(x,µN(x))

. (33)

This implies that the modified optimal value function decays in each step, except for
an error term which vanishes as N → ∞. Since ṼN(x) ≥ ρ(|x|xe) and ˜̀(x,µN(x)) ≥
ρ(|x|xe), from this we can conclude that as k→ ∞ the closed loop solution xMPC(k)
converges to a neighbourhood of xe, which shrinks down to xe for N → ∞ (for a
rigorous application of this argument see [14, Section 8.6]). In fact, due to the upper
bound on ṼN induced by Assumption 12(ii), we can even conclude the existence of
β ∈K L and κ ∈L such that for all x ∈X the MPC closed loop solution xMPC(k)
with xMPC(0) = x satisfies

|xMPC(k)|xe ≤max{β (|x|xe ,k), κ(N)} (34)

for all N,k ∈ N, cf. [14, Theorem 8.33]. This means that the optimal equilibrium xe

is practically asymptotically stable for the MPC closed loop.
We note that already in very simple examples (see again [11, 12] or [14, Chapter

8]) convergence to the optimal equilibrium xe will not hold for the MPC closed loop.
Hence, in the absence of terminal conditions, practical asymptotic stability of xe is
in general the best one can obtain. This also explains the factor K before δ1(N) in
the estimate from Theorem 15. Since the trajectory always has a little distance to the
optimal equilibrium, in each step we collect a small error and these errors sum up
from 0 to K−1, resulting in the factor K in front of the error term. Note, however,
that the fact that the trajectory stays near xe prevents the solution from deteriorating
as k→ ∞, even though the error term in (30) tends to infinite for large K.

Due to the fact that the closed loop solution converges to a neighbourhood of xe,
it seems plausible that also without terminal conditions we can obtain a performance
estimate for Jcl

K (x,µN) without reference to the infinite horizon problem, similar to
(28). Our last theorem shows that this is indeed possible.

Theorem 16. Consider the MPC scheme without terminal conditions satisfying As-
sumption 12 and let X be bounded. Then there are δ1,δ2,δ3 ∈L such that for all
x ∈ X the closed loop solution xMPC(k) generated by this scheme with xMPC(0) = x
satisfies the inequality

Jcl
K (x,µN)≤ inf

u∈UK
δ (K)

(x)
JK(x,u)+δ1(N)+Kδ2(N)+δ3(K) (35)

for all K,N ∈ N, for UK
δ (K)(x) from (27) with δ (K) := |xMPC(K)|xe .
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Proof. From (33) we obtain

˜̀(x,µN(x))≈N ṼN(x)−ṼN( f (x,µN(x))).

We denote the error in this approximate equation by δ2(N). Summing ˜̀(x,µN(x))
along the closed-loop trajectory then yields

K−1

∑
k=0

˜̀(xMPC(k),µN(xMPC(k)))≤ ṼN(x)−ṼN(xMPC(K))+Kδ2(N). (36)

Now the dynamic programming equation (4) and Assumption 12(ii) yield for all
K ∈ {1, . . . ,N} and all u ∈ UK

δ (K)(x)

J̃K(x,u) = J̃K(x,u)+ṼN−K(xu(K,x))︸ ︷︷ ︸
≥ṼN(x)

−ṼN−K(xu(K,x))︸ ︷︷ ︸
≤γṼ (δ (K))

≥ ṼN(x)− γṼ (δ (K)). (37)

Due to the non-negativity of ˜̀, for K ≥ N we get J̃K(x,u)≥ ṼN(x) for all u ∈UK(x).
Hence (37) holds for all K ∈ N. Moreover, we have ṼN(x) ≥ 0. Using (36), (37),
(29) and the definition of δ2, for all u ∈ UK

δ (K)(x) we obtain

Jcl
K (x,µN(x)) =

K−1

∑
k=0

˜̀(xMPC(k),µN(xMPC(k)))−λ (x)+λ (xMPC(K))

≤ ṼN(x)−ṼN(xMPC(K))+Kδ2(N)−λ (x)+λ (xMPC(K))

≤ J̃K(x,u)+ γṼ (δ (K))−ṼN(xMPC(K))+Kδ2(N)−λ (x)+λ (xMPC(K))

= JK(x,u)+ γṼ (δ (K))−ṼN(xMPC(K))+Kδ2(N)−λ (xu(K,x))+λ (xMPC(K))

≤ JK(x,u)+ γṼ (δ (K))+Kδ2(N)+2γλ (δ (K)).

Now from (34) we obtain

γṼ (δ (K))+2γλ (δ (K)) ≤ sup
x∈X

γṼ (β (|x|xe ,K))+2γλ (β (|x|xe ,K))︸ ︷︷ ︸
=:δ3(K)

+ γṼ (κ(N))+2γλ (κ(N))︸ ︷︷ ︸
=:δ1(N)

which finishes the proof. ut
The interpretation of this result is similar to that of (28): among all solutions steer-
ing x into the δ (K)-neighbourhood of the optimal equilibrium xe, MPC yields the
cheapest one up to error terms vanishing for large K and larger N.

We would like to note that the results from this section have been extended in
various ways. For instance, in many examples it can be observed that the error
terms δ j(N) converge to 0 exponentially fast as N → ∞, i.e., that they are of the
form δ j(N) = CΘ N for C > 0 and Θ ∈ (0,1). Conditions under which this can be



Dynamic Programming, Optimal Control and Model Predictive Control 23

rigorously proved can be found in [18]. Another extension concerns replacing the
optimal equilibrium xe by a periodic orbit. Corresponding results can be found, e.g.,
in [2, 24, 31]. Currently, one research focus is the extension of the results to arbitrary
time varying problems, in which xe is replaced by a general time varying trajectory
with certain optimality properties. First results on this topic will appear in [14].

6 Conclusions

We have presented a collection of results about the infinite horizon closed loop
performance and stability of MPC closed loop trajectories, for both stabilizing and
economic MPC and for schemes with and without terminal conditions. In the course
of this analysis, we have shown that dynamic programming arguments are needed
in a lot of different places and for various purposes. Dynamic programming thus
forms an indispensable tool for understanding the behavior of MPC schemes.
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7. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme
with guaranteed stability. Automatica 34(10), 1205–1217 (1998)

8. Diehl, M., Amrit, R., Rawlings, J.B.: A Lyapunov function for economic optimizing model
predictive control. IEEE Trans. Autom. Control 56, 703–707 (2011)

9. Faulwasser, T., Bonvin, D.: On the design of economic NMPC based on approximate turnpike
properties. In: Proceedings of the 54th IEEE Conference on Decision and Control — CDC
2015, pp. 4964–4970 (2015)

10. Forbes, M.G., Patwardhan, R.S., Hamadah, H., Gopaluni, R.B.: Model predictive control in
industry: Challenges and opportunities. In: Proceedings of the 9th IFAC Symposium on Ad-
vanced Control of Chemical Processes — ADCHEM 2015, IFAC-PapersOnLine, vol. 48, pp.
531–538. Whistler, Canada (2015)
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