290 research outputs found

    Exact propagators on the lattice with applications to diffractive effects

    Full text link
    The propagator of the discrete Schr\"odinger equation is computed and its properties are revealed through a Feynman path summation in discrete space. Initial data problems such as diffraction in discrete space and continuous time are studied analytically by the application of the new propagator. In the second part of this paper, the analogy between time propagation and 2D scattering by 1D obstacles is explored. New results are given in the context of diffraction by edges within a periodic medium. A connection with tight-binding arrays and photonic crystals is indicated.Comment: Final version with two appendices. Published in J. Phys. A: Math. Theo

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Carbon Nanotube Solar Cells

    Get PDF
    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement

    A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality

    Get PDF
    The Soil Management Assessment Framework (SMAF) was developed to evaluate impacts of land use and management practices on soil quality (SQ), but its suitability for Brazilian tropical soils was unknown. We hypothesized that SMAF would be sensitive enough to detect SQ changes associated with sugarcane (Saccharum officinarum L.) expansion for ethanol production. Field studies were performed at three sites across the south-central region of Brazil, aiming to quantify the impacts of a land use change sequence (i.e., native vegetation–pasture–sugarcane) on SQ. Eight soil indicators were individually scored using SMAF curves developed primarily for North American soils and integrated into an overall Soil Quality Index (SQI) and its chemical, physical, and biological sectors. The SMAF scores were correlated with two other approaches used to assess SQ changes, soil organic C (SOC) stocks and Visual Evaluation of Soil Structure (VESS) scores. Our findings showed that the SMAF was an efficient tool for assessing land use change effects on the SQ of Brazilian tropical soils. The SMAF scoring curves developed using robust algorithms allowed proper assignment of scores for the soil chemical, physical, and biological indicators assessed. The SQI scores were significantly correlated with SOC stocks and VESS scores. Long-term transition from native vegetation to extensive pasture promoted significant decreases in soil chemical, physical, and biological indicators. Overall SQI suggested that soils under native vegetation were functioning at 87% of their potential capacity, while pasture soils were functioning at 70%. Conversions of pasture to sugarcane induced slight improvements in SQ, primarily because of improved soil fertility. Sugarcane soils are functioning at 74% of their potential capacity. Based on this study, management strategies were developed to improve SQ and the sustainability of sugarcane production in Brazil
    • …
    corecore