3,277 research outputs found

    Life cycle assessment of photovoltaic implementation: an Italian case study

    Get PDF
    The energy efficiency is the possibility and ability to carry out a production process consume with the involves of less energy and minor environmental impact. Life Cycle Assessment is one of the major tools involved in the economic, social and environmental evaluation. The aim of this work is the LCA application to an Italian company that provides to install a photovoltaic plant for the energy self-maintenance, in order to break down costs and environmental impacts. The photovoltaic business can be an interesting solution especially for companies which consume more energy during the day. In the case study was highlighted that an average of 400.00 €/month was spent, equal to about 900 kWh / month. The company installed a 10 kWp photovoltaic system and with this implementation the energy consumption diminished of 84% and the costs of 57%

    Sensitivity analysis of cohesive zone model parameters to simulate hydrogen embrittlement effect

    Get PDF
    For many steels and alloys used in engineering field, the presence of atomic hydrogen in working environment can produce a deleterious effect. In fact, when this small element penetrates into the material lattice induces a drastically decrease of the mechanical properties. This process is known as hydrogen embrittlement. This complex phenomenon involves chemical and physical factors that are strictly dependent on the microstructure of the material. Some examples are hydrogen diffusivity, solubility of hydrogen into the material and concentration related not only to the interstitial lattice sites (NILS) but also to the traps sites that is the most difficult part to quantify. The present work starts from the development of 2D finite elements cohesive zone model reproducing a toughness test of a high-strength low carbon steel, AISI 4130 operating in hydrogen-contaminated environment. With three consequent steps of simulations, the model implements diffusion and crack propagation analyses using cohesive elements. The embrittlement effect of hydrogen is considered by decreasing the cohesive law (TSL), which expresses the constitutive response of the material to the fracture behavior, based on the total hydrogen concentration. It includes NILS and traps sites. Aim of the work is a sensitivity analysis of the parameters included into the model. In particular, the influence of the hydrogen diffusion coefficient as well as the initial concentration set to calculate the total hydrogen concentration at the crack tip are taken into account. Both a comparison of the values used in the model with literature data and a critical discussion of the results obtained by the sensitivity analysis will be presented

    Hyperon Polarizabilities in the Bound State Soliton Model

    Get PDF
    A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions.Comment: 19 pages, plain Latex, no figure

    Molecular characterization of a phytoplasma causing phyllody in clover and other herbaceous hosts in northern Italy

    Get PDF
    Red clover (Trifolium pratense) and Ladino clover (Trifolium repens) plants showing phytoplasma-associated symptoms (yellowing/reddening, virescence and phyllody) have been recovered in Friuli-Venezia Giulia, Italy. Using AluI RFLP analysis of PCR amplified 16S rDNA we showed that the disease can be caused independently by two phylogenetically distinct phytoplasmas. One of them showed the very typical 16S rDNA RFLP pattern of the agent of Clover Phyllody in Canada (CCPh). The 16S rDNA of the other phytoplasma (Italian Clover Phyllody phytoplasma, ICPhp) has been PCR amplified, cloned and sequenced. The sequence revealed high similarity (>98%) with phytoplasmas belonging to the X disease cluster, which includes organisms not reported to cause phyllody on their hosts. The analysis by AluI RFLP of the PCR amplified pathogen 16S rDNA from other herbaceous plants (Crepis biennis, Taraxacum officinale, Leucanthemum vulgare) collected nearby with phytoplasma-associated symptoms showed similar patterns. Southern blot hybridization of their EcoRI digested total DNA revealed identical RFLP patterns, suggesting that the causative agent may be the same organism

    Stereopsis in sports: Visual skills and visuomotor integration models in professional and non-professional athletes

    Get PDF
    Visual skills in sport are considered relevant variables of athletic performance. However, data on the specific contribution of stereopsis—as the ability to perceive depth—in sport performance are still scarce and scattered in the literature. The aim of this review is therefore to take stock of the effects of stereopsis on the athletic performance, also looking at the training tools to improve visual abilities and potential differences in the visuomotor integration processes of professional and non-professional athletes. Dynamic stereopsis is mainly involved in catching or interceptive actions of ball sports, whereas strategic sports use different visual skills (peripheral and spatial vision) due to the sport-specific requirements. As expected, professional athletes show better visual skills as compared to non-professionals. However, both non-professional and professional athletes should train their visual skills by using sensory stations and light boards systems. Non-professional athletes use the visual inputs as the main method for programming motor gestures. In contrast, professional athletes integrate visual information with sport expertise, thus, they encode the match (or the athletic performance) through a more complex visuomotor integration system. Although studies on visual skills and stereopsis in sports still appear to be in their early stages, they show a large potential for both scientific knowledge and technical development

    Multi-Disciplinary Optimisation of Road Vehicle Chassis Subsystems

    Get PDF
    Two vehicle chassis design tasks were solved by decomposition-based multi-disciplinary optimisation (MDO) methods, namely collaborative optimisation (CO) and analytical target cascading (ATC). A passive suspension system was optimised by applying both CO and ATC. Multiple parameters of the spring and damper were selected as design variables. The discomfort, road holding, and total mass of the spring–damper combination were the objective functions. An electric vehicle (EV) powertrain design problem was considered as the second test case. Energy consumption and gradeability were optimised by including the design of the electric motor and the battery pack layout. The standard single-level all-in-one (AiO) multi-objective optimisation method was compared with ATC and CO methods. AiO methods showed some limitations in terms of efficiency and accuracy. ATC proved to be the best choice for the design problems presented in this paper, since it provided solutions with good accuracy in a very efficient way. The proposed investigation on MDO methods can be useful for designers, to choose the proper optimisation approach, while solving complex vehicle design problems

    Resistive plate chambers for time-of-flight measurements

    Get PDF
    The applications of Resistive Plate Chambers (RPCs) have recently been extended by the development of counters with time resolution below 100 ps sigma for minimum ionising particles. Applications to HEP experiments have already taken place and many further applications are under study. In this work we address the operating principles of such counters along with some present challenges, with emphasis on counter aging.Comment: Presented at "PSD6 - 6th International Conference on Position Sensitive Detectors", 9-13 September 2002, Leicester, UK. Submitted to Nuclear Instruments and Methods
    • …
    corecore