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(1429) Buenos Aires, Argentina.
c INFN, Sezione di Milano, via Celoria 16, I-20133 Milano, Italy.

August 1995

ABSTRACT

A detailed calculation of electric and magnetic static polarizabilities

of octet hyperons is presented in the framework of the bound state soliton

model. Both seagull and dispersive contributions are considered, and the

results are compared with different model predictions.

†Fellow of the CONICET, Argentina.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25183951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The electromagnetic polarizabilities are quantities of fundamental interest in the un-

derstanding of hadron structure [1]. They characterize the dynamical response of the

hadron to external electromagnetic fields. While a rather large amount of work has

been devoted, both theoretically and experimentally, to the study of the proton and

neutron polarizabilities (see e.g. Refs.[2, 3] for recent experimental and theoretical re-

views, respectively) very little is known about the hyperon polarizabilities. However,

with the advent of hyperon beams at FNAL and CERN, the experimental situation

is likely to change. In particular, Σ hyperon polarizabilities will be soon measured in

the Fermilab E781 SELEX experiment [4, 5]. This has triggered a number of theo-

retical investigations in different hadron models. In fact, predictions have been made

in the framework of the non-relativistic quark model (NRQM) [6] and heavy baryon

chiral perturbation theory (HBCPT) [7]. As it is well-known the above-mentioned

models have a few problems in describing baryon magnetic polarizabilities. Within

the NRQM the large diamagnetic contribution to the nucleon magnetic polarizability

is rather difficult to understand. In the case of HBCPT predictions are not expected

to be very accurate unless the contributions due to P-wave excitations (∆-like), which

are of higher order in the chiral expansion, are included.

It is, therefore, interesting to attempt a description based on a completely

different point of view, like the one given by the topological (Skyrme) soliton model.

Within the chiral soliton model only electric hyperon polarizabilities have been so

far studied [8]. In the present work we will explore the static electric and magnetic

polarizabilities using the bound-state soliton model[9, 10], which has already given

good results for hyperon magnetic moments and mean square radii[11, 12].

This article is organized as follows: In Sec.2 we introduce the soliton model

effective action in the presence of e.m. fields. In Sec.3 we briefly discuss how hyperons

are described in the bound state approach and in Sec.4 we calculate the static electric

and magnetic polarizabilities. Numerical results are reported in Sec.5, while Sec.6

contains the conclusions. In Appendix A we estimate the dispersive contributions

to the hyperon electric polarizability. In Appendix B and in Appendix C we give

the explicit expressions of the (elementary) polarizabilities and magnetic moments

respectively.
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2 The effective action in the presence of electro-

magnetic fields

Our starting point is a gauged effective chiral action with an appropriate symmetry

breaking term. It has the form

Γ = ΓSK + Γan + Γsb (1)

where ΓSK is the gauged Skyrme action

ΓSK =
∫
d4x

{f2
π

4
Tr
[
DµU(DµU)†

]
+

1

32ε2
Tr
[
[U †DµU,U

†DνU ]2
] }

. (2)

Here fπ is the pion decay constant ( = 93 MeV empirically), ε is a dimensionless

constant (the so-called Skyrme parameter) and U is the SU(3) valued chiral field.

The covariant derivative is defined as

DµU = ∂µU + ie Aµ [Q,U ] (3)

where Aµ is the electromagnetic field and Q the electric charge operator

Q =
1

2

[
λ3 +

1
√

3
λ8

]
. (4)

Moreover, e represents the elementary electric charge. Since we are using Gaussian

units throughout the paper, in the following we adopt e2 = 1/137.

Γan is the gauged Wess-Zumino action which for the electromagnetic case we

are interested in reads[13]:

Γan = −
iNc

240π2

∫
Tr[(U †dU)5]

−
Nc

48π2

∫
d4x εµνρσ

{
eAµ Tr [Q (LνLρLσ −RνRρRσ)]

−ie2Aµ∂νAρ Tr
[
2 Q2(Lσ −Rσ) +QU †QULσ −QUQU

†Rσ

]}
, (5)

where Lµ = U †∂µU , Rµ = U∂µU
† and Nc is the number of colors. Finally, Γsb is the

symmetry breaking term [14]:

Γsb =
∫
d4x

{
f2
πm

2
π + 2f2

Km
2
K

12
Tr
[
U + U † − 2

]
+
√

3
f2
πm

2
π − f

2
Km

2
K

6
Tr
[
λ8

(
U + U †

)]
+
f2
K − f

2
π

12
Tr
[
(1−

√
3λ8)

(
U(DµU)†DµU + U †DµU(DµU)†

)]}
, (6)
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where fK is the kaon decay constant and mπ and mK are the pion and kaon masses

respectively.

For our purposes, the effective action can be more conveniently written as

Γ = Γstrong + Γlin + Γquad , (7)

where we have singled out the contributions linear and quadratic in the e.m. field:

Γlin =
∫
d4x e AµJ

µ , (8)

Γquad = −
∫
d4x e2 Aµ G

µν Aν . (9)

Here:

Jµ = i
f2
π

2
Tr {Q(Lµ +Rµ)}

+i
f2
K − f

2
π

12
Tr
{
(1−

√
3λ8) ([U,Q]Lµ − Lµ[U †, Q] + [U †, Q]Rµ −Rµ[U,Q])

}
−

i

8ε2
Tr {Q ([Lν, [L

µ, Lν ]] + [Rν, [R
µ, Rν ]])}

−
Nc

48π2
εµνρσTr {Q (LνLρLσ −RνRρRσ)} , (10)

and

Gµν = −gµν
[
f2
π

4
TrP 2 +

f2
K − f

2
π

12
Tr
{
(1−

√
3λ8)(P

2U † + UP 2)
}]

+
1

8ε2

[
gµνhαα − h

µν
]

+
iNc

48π2
εµνρσTr

[
(2Q2 +QU †QU)Lσ − (2Q2 +QUQU †)Rσ

]
∂ρ , (11)

where the following definitions have been used:

P = Q− U † Q U , (12)

hµν = Tr
[
PLµPLν − P

2LνLµ
]
. (13)

In Eq.(7) Γstrong is the action in the absence of the electromagnetic field. It

describes the strong interactions that give rise to the hyperon. In the next section it

will be treated following the usual steps of the bound state model.

3 Hyperons in the bound state soliton model

The bound state soliton model has been discussed in great detail in the literature (see

e.g. Refs.[9, 10]). Therefore, in this section we will only present the main features of

the model. Following Ref.[9] we introduce the Callan–Klebanov ansatz

U =
√
Uπ UK

√
Uπ , (14)
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where

UK = exp

i√2

fK

 0 K

K† 0

 , K =

 K+

K0

 , (15)

and Uπ is the soliton background field written as a direct extension to SU(3) of the

SU(2) field uπ, i.e.,

Uπ =

 uπ 0

0 1

 , (16)

with uπ being the conventional hedgehog solution uπ = exp[iτττ · r̂rrF (r)].

According to the usual procedure, one replaces the ansatz (14) in the effective

action Γstrong and expands up to the second order in the kaon field. The resulting

Lagrangian density can then be written as the sum of a pure SU(2) Lagrangian de-

pending on the chiral field only and an effective Lagrangian, describing the interaction

between the soliton and the kaon fields. The minimization of the first term deter-

mines the static soliton profile F (r) (chiral angle). The minimization of the second

one leads to an eigenvalue equation for the time-dependent meson fieldK in the static

potential field of the SU(2) soliton. The bound state solutions to this wave equa-

tion represent stable hyperon states. Due to the spin–isospin structure of the soliton

this eigenvalue equation becomes separable if a mode decomposition of the kaon field

in terms of the grand spin ΛΛΛ = LLL + TTT (where LLL represents the angular momentum

operator and TTT is the isospin operator) is performed. As shown in Refs.[9, 10] the

lowest bound state is found in the (Λ, l) = (1/2, 1) channel. The different octet and

decuplet baryons are obtained by putting the corresponding number of kaons in this

bound state. However, by naively adding |S| times the bound state energy ω to the

soliton mass one obtains only the centroid mass of the hyperons with strangeness S.

The splittings among hyperons with different spin and/or isospin are given by the

rotational corrections, introduced according to the time–dependent rotations:

uπ → AuπA
† ,

K → AK , (17)

with A = A(t) being the SU(2) rotation matrix. This transformation adds an extra

term to the Lagrangian which is of order 1/Nc. Therefore, within our approximations

the strong hamiltonian reads

Hstrong = Msol + |S|ω +
1

2Θ
( ~J c + c ~JK)2 . (18)

Here, Θ is the soliton moment of inertia, and c is the hyperfine splitting constant (its

explicit form for the cases of interest in this paper can be easily obtained from the
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general form given in Ref. [15]). Moreover, ~J c and ~JK are the collective and bound

kaons angular momentum operators, respectively. Taking matrix elements of these

operators between the different octet and decuplet hyperon states we obtain their

corresponding masses in the absence of e.m. fields

MI,J,S = Msol +ω|S|+
1

2Θ

[
cJ(J +1) + (1− c)I(I + 1) +

c(c− 1)

4
|S|(|S|+ 2)

]
. (19)

Here, I , J and S are the isospin, spin and strangeness hyperon quantum numbers

respectively.

4 The hyperon static polarizabilities

In this paper we will be concerned with the static polarizabilities only, defined through

the shift in the particle’s energy due to the presence of an external constant electric

and magnetic field as:

δM = −
1

2
α E2 −

1

2
β B2 . (20)

The electric α and magnetic β polarizabilities characterize the dynamical response to

the external electromagnetic fields. In the following we will study the shifts in E2 and

B2 separately, by a proper choice for the electromagnetic potential Aµ. As it is clear

from the form of the interaction (7), there will be in principle two contributions to

the static polarizabilities, one coming from the term quadratic in Aµ, known as the

seagull contribution and one coming from second order perturbation theory applied

to the term linear in Aµ, the so called dispersive contribution.

4.1 The static electric polarizability

The energy shift proportional to E2 can easily be obtained from (7) by adopting a

potential Aµ of the form

Aµ = (A0, 0) , A0 = −zE (21)

which corresponds to a constant electric field E along the z-axis. Using the definitions

(12,13), the seagull contribution can be expressed as

αs =
e2

2

∫
d3r

{
z2

[
f2
πTr(P 2) +

1

2ε2
hii +

f2
K − f

2
π

3
Tr
{
(1−

√
3λ8)(P

2U † + UP 2)
}]}

.

(22)

It should be noticed that in deriving Eq.(22) we have assumed that the seagull

contributions to the Hamiltonian are simply equal to the seagull contributions to the
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Lagrangian, with the opposite sign. There has been recently some controversy about

this point. In Refs.[3, 16] it has been argued that on general grounds in a field theory

electric seagull contributions to the hamiltonian should vanish. However, as discussed

in Ref.[17] this is not the case when the degrees of freedom are restricted to be in

some collective subspace. In fact, in that reference it has been explicitly shown that

the procedure above is completely valid when the Skyrme model in the presence of a

constant electric field is treated by introducing collective coordinates.

The dispersive contribution αd is determined by matrix elements describing

transitions between the particular octet state under investigation and negative parity

excited states. In general, αd is believed to be much smaller than αs[18]. For this rea-

son we will not consider it further in our discussion. An estimate of the approximation

introduced in this way is discussed in Appendix A.

Finally, we note that αs contains no contributions coming from the anomaly

term (5), because of the antisymmetric tensor εµνρσ.

Introducing the adiabatically rotated bound state ansatz in αs, one obtains the

following operator form

αs =
[
γ

(e)
1 + γ

(e)
2 (R33)

2 + γ
(e)
3 |S|

+ γ
(e)
4 |S| (R33)

2 + γ
(e)
5 JKa R3a + γ

(e)
6 JK3 R33

]
(23)

where we have absorbed e2 in the elementary polarizabilities γ(e)
i (i = 1, . . . , 6), which

depend on the radial part of the soliton and bound kaon wavefunctions only. Their

explicit expressions are listed in Appendix B. Rab are the rotation matrices defined

by

Rab =
1

2
Tr
[
τa A τb A

†
]
. (24)

In order to get the expressions for hyperon polarizabilities we have to evaluate

the matrix elements of the operators appearing in (23) between hyperon states. This

is done using standard angular momentum techniques. For the ground state octet

baryons we obtain

αs(Λ) = γ
(e)
1 + γ

(e)
3 +

1

3

(
γ

(e)
2 + γ

(e)
4

)
, (25)

αs(Σ0) = γ
(e)
1 + γ

(e)
3 +

1

3

(
γ

(e)
2 + γ

(e)
4

)
, (26)

αs(Σ±) = γ
(e)
1 + γ

(e)
3 +

1

3

(
γ

(e)
2 + γ

(e)
4

)
±

1

2

(
γ

(e)
5 +

1

3
γ

(e)
6

)
, (27)

αs(Ξ0) = γ
(e)
1 + 2γ

(e)
3 +

1

3

(
γ

(e)
2 + 2γ

(e)
4

)
±

2

3

(
γ

(e)
5 +

1

3
γ

(e)
6

)
. (28)
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4.2 The static magnetic polarizability

We proceed along similar lines to derive the static magnetic polarizability. In this

case we adopt the vector potential

Aµ = (0,−
1

2
rrr ×BBB) (29)

appropriate for a constant magnetic fieldB along the z-axis, BBB = Bẑ. Now we have to

take into account both seagull and dispersive contributions. In fact, the Hamiltonian

form of (7) reads

H = Hstrong +H lin +Hquad , (30)

where, again, all the contributions from Lan vanish for symmetry reasons.

The quadratic part yields the seagull contribution as for the electric polarizability.

Its explicit form, in terms of the operators P and hµν is

βs=−
e2

8

∫
d3r

{
(r2 − z2)

[
f2
πTr(P 2) +

f2
K − f

2
π

3
Tr
{
(1−

√
3λ8)(P

2U † + UP 2)
} ]

+

+
1

2ε2

[
rirjhij + r2h33 − rir3(hi3 + h3i)− (r2 − z2)h00

] }
. (31)

A lengthy calculation shows that βs has the same operatorial form of αs:

βs =
[
γ

(m)
1 + γ

(m)
2 (R33)

2 + γ
(m)
3 |S|

+γ
(m)
4 |S| (R33)

2 + γ
(m)
5 JKa R3a + γ

(m)
6 JK3 R33

]
, (32)

where the operators involved have to be evaluated again between the same hyperon

states. Therefore for the seagull part of the magnetic polarizability we obtain again

formal expressions similar to Eqs.(25)–(28), with the elementary polarizabilities γ(e)
i

replaced by γ
(m)
i (i = 1, . . . , 6). Their explicit form is reported in Appendix B.

We must stress that in deriving Eq.(31) we have again implicitly assumed

Hquad = −Lquad. This is correct up to a small contribution coming from Llin, propor-

tional to the ratio (µs/MN )2, where µs and MN are the isoscalar magnetic moment

operator and nucleon mass, respectively. For a more complete discussion, see for

instance Ref.[19].

The dispersive contribution arises from the term H lin in (30). Using second

order perturbation theory we get

βHd =
e2

2M2
N

∑
H ′ 6=H

|〈H|µ3|H ′〉|2

mH ′ −mH

(33)
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where the indices H and H ′ refer to different hyperon states. In writing Eq.(33) we

have used the explicit form of H lin for the particular case of a constant magnetic field

B along the z-axis

H lin = −
e

2MN

B µ3 (34)

where µ3 is the magnetic moment operator. It can be written as a sum of an isoscalar

and isovector part as follows[20, 11]

µ3 = µ3
s + µ3

v , (35)

µ3
s = µs,0J

c
3 + µs,1J

K
3 , (36)

µ3
v = −2 (µv,0 + µv,1|S|)R33 . (37)

The explicit expressions of the elementary magnetic moment operators µs,i and µv,i

are reported in Appendix C. In terms of them the relevant matrix elements are

< Λ|µ3|Σ0 > = −
2

3
[µv,0 + µv,1] , (38)

< Λ|µ3|Σ
∗
0 > =

2
√

2

3
[µv,0 + µv,1] , (39)

< Σ0|µ3|Σ
∗
0 > =

√
2

3
[µs,0 − µs,1] , (40)

< Σ±|µ3|Σ
∗
± > =

√
2

3
[µs,0 − µs,1 ± (µv,0 + µv,1)] , (41)

< Ξ0|µ3|Ξ
∗
0 > =

√
2

3

[
µs,0 − µs,1 ±

4

3
(µv,0 + 2µv,1)

]
. (42)

Note that for each octet hyperon only a few matrix elements are non-vanishing.

5 Numerical results and discussion

In order to estimate the uncertainties intrinsic to our approach we have performed

numerical calculations adopting two different sets of parameters, namely

SET I : fπ = 93MeV, ε = 4.26 ,

SET II : fπ = 54MeV, ε = 4.84 .

In both cases we use the empirical values mπ = 138 MeV , mK = 495 MeV and

fK/fπ = 1.22. In the first set of parameters we have taken the empirical value of fπ.

In the second set we have taken the value of fπ that fits the empirical nucleon mass.

In both sets ε is adjusted to reproduce the empirical ∆−N mass difference.
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The results obtained with the sets of parameters given above are summarized

in Tables I-V. In Tables I and II, we list the elementary polarizabilities γi for the elec-

tric and magnetic cases, respectively. In Table III we give the elementary magnetic

moments needed to calculate the dispersive contributions to the magnetic polariz-

abilities. These values have already been given in Refs.[11, 21] and are included here

for the sake of completeness. Finally, in Table IV and V we report our results for

the electric and magnetic static hyperon polarizabilities, respectively. In the case

of the magnetic polarizabilities we also list the dispersive and seagull contributions

separately.

Let us first discuss the values of the elementary polarizabilities γi. We see that

for both sets of parameters the purely solitonic contributions γ1 and γ2 are much larger

than the others. This holds for both the electric and magnetic cases. As a result of

this behaviour, we expect a rather small splitting between the seagull contributions

to the polarizabilities of the different baryons. This can be in fact observed in Tables

IV and V. We also note that the values of γi are rather strongly dependent on the

values of the input parameters used. At least, in the case of γ1 and γ2 (which are, as

already mentioned, the dominant terms) this is to be expected. As well-known within

the Skyrme model these magnitudes are basically proportional to the square of the

nucleon isovector radius1 which in turn is quite sensible to the choice of parameters.

SET I leads to the value < r2
v >= 0.70 fm2 while the value obtained with SET II is

< r2
v >= 1.08 fm2 as compared with the empirical value < r2

v >emp= 0.81 fm2. This

dependence on the parameters reflects, of course, on the values of all the electric and

diamagnetic hyperon polarizabilities. On the other hand, the dispersive contributions

to the magnetic polarizabilities are much more stable under change of parameters.

This comes as a result of the compensation between the parameter dependence of the

numerator and denominator in Eq.(33).

It is interesting to compare our predictions with those obtained in other models.

Our results indicate a rather large Σ+ electric polarizability. This is in agreement

with the quark model prediction of Ref.[6], ᾱNRQMΣ+ = 20.8 × 10−4fm3. However,

such a model predicts a rather small value for the case of the Σ−, namely ᾱNRQMΣ− =

5.7×10−4fm3. Although we also predict a smaller value for the Σ− as compared with

that of the Σ+, in our case the splitting between both values is much smaller. As

mentioned above this is a direct consequence of the fact that in our model the electric

polarizabilities are completely dominated by the purely solitonic contributions. Small

splittings have been also found in the Skyrme model within the framework of the

1This relation holds strictly for the electric seagull term. In the magnetic case there is a (numer-

ically) small correction.
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perturbative approximation to the SU(3) collective coordinate approach [8]2. The

use of an exact diagonalization procedure[22] does not change the overall behaviour

[23]. Only by the introduction of a feedback from the collective SU(3) rotation on

the soliton, that is using the so-called slow rotator approach (SRA), large splittings

between the electric polarizabilities of the different hyperons could be obtained. In

such case, the electric polarizabilities decrease with increasing (absolute) values of

strangeness. This behaviour is similar to the one obtained in chiral perturbation

theory[7]. It should be noticed, however, that in the SRA calculation of Ref.[8] this

is obtained at expenses of a rather small isovector radius < r2
v >= 0.49 fm2.

To complete our discussion, it is important to mention that for the case of

the nucleon, where the empirical value of the electric polarizability (αN )emp = 12 ×

10−4fm3 is rather well established (see Ref.[2] for a very recent determination and

update of the experimental situation), the Skyrme model predicts a somewhat large

value for SET I and too large for SET II. As in the case of the soliton mass, however,

there are indications that this might be cured by next-to-leading order corrections[24]

We turn now to the magnetic polarizabilities. Due basically to the dispersive

contributions our results indicate rather large splittings between the values corre-

sponding to the different hyperons. We also observe that since seagull contributions

are overestimated for Set II we obtain all negative values in that case. For Set I

our predicted Σ+ magnetic polarizability agrees well with the one obtained in the

non-relativistic quark model[6]. On the other hand, in the case of the Σ− although

we also obtain a diamagnetic behaviour, our value is larger (in absolute value). The

results obtained by using baryon chiral perturbation are rather different from ours.

In should be noticed that such a calculation does not include P -wave excitations (∆-

like) since they are of higher order in the chiral expansion. Therefore, predictions are

not expected to be as accurate as in the electric case.

6 Conclusions

In this paper we have presented a complete description of static electric and magnetic

polarizabilities of octet hyperons in the framework of the bound state soliton model.

2In Ref.[8] it has been incorrectly stated that one of the non-minimal photon coupling terms

does not contribute to the electric polarizability. As a matter of fact it does, and almost completely

compensates the contribution from the other non-minimal term [23]. As a consequence of this can-

cellation the results of Ref.[8] have to be modified. In fact, the addition of the missing contributions

amounts to a roughly 20% increase of all the polarizabilities corresponding to the perturbative

calculation (PT) and a 40% increase of those corresponding to the slow rotator approach (SRA).

In both cases the ratios taken with respect to the proton polarizability remain almost unchanged.
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In the electric case the seagull contribution is dominant, while in the magnetic case

both seagull and dispersive contributions are relevant.

As shown by numerical calculation, the seagull contributions are always dom-

inated by the purely solitonic terms, γ1 and γ2. These pieces determine the general

pattern for electric polarizabilities, where we obtain small splittings within the same

set of parameters. The structure is richer in the magnetic polarizability case because

of the interplay between a large (negative) seagull part with the relevant dispersive

contribution.

Finally, we note that although some of our results are in agreement with those

of the non-relativistic quark model, in general this is not the case. In addition,

the calculations performed in the framework of heavy baryon chiral perturbation

theory lead to still different predictions. In this situation, it is clear that the future

experimental data from FNAL and CERN could be of great help to discriminate

among the different existing models of hyperons.
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Appendix A

In this Appendix we give an estimate of the value of the dispersive contributions to

the hyperon electric polarizability. They are due to dipole transitions to the negative

parity excited states. As in the magnetic case, these contributions are obtained using

second order perturbation theory with the linear terms H lin in the hamiltonian. In

the case of a static electric field the corresponding expression is

αHd = 2e2
∑
H ′

| < H ′|d3|H > |2

mH ′ −mH

, (43)

where d3 is the third component of the dipole operator

d3 =
∫
dV z ρem . (44)

We consider here the particular example of the Λ electric polarizability, where the

largest contribution is expected to be the one in which the intermediate state is the

Λ(1405). Then, H = Λ and the sum over H ′ is restricted to H ′ = Λ(1405). In this

case we only need to consider the isoscalar kaon contributions to ρem

ρem(kaon) =
i

2
f
[
K†K̇ − K̇†K

]
− λK†K , (45)

where

f = 1 +
1

4ε2f2
K

[
F ′2 + 2

sin2 F

r2

]
, (46)

λ = −
Nc

8π2f2
K

sin2 F

r2
F ′ . (47)

Taking matrix elements of ρem between Λ(1405) and Λ we get

< Λ(1405)|ρem|Λ >= − [f(ω̃ + ω) + 2λ]
k̃ k

4π
r̂· < ~J > (48)

where < ~J > indicates the matrix elements of the spin operator between the Λ(1405)

and Λ spin states and (ω̃, k̃) and (ω, k) are the kaon eigenenergies and bound state

radial wavefunctions in the (1/2, 0) and (1/2, 1) channels, respectively. Therefore

< Λ(1405)|d3|Λ >= −γ (49)

where

γ =
1

6

∫
dr r3 [f(ω̃ + ω) + 2λ] k̃ k . (50)
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To derive this expression the angular integral has been performed and < J3 >= 1/2

has been used. Replacing in the expression for α we get that the contribution to the

Λ electric polarizability due to dipole electric transition to Λ(1405) is

αΛ
d =

2 e2γ2

mΛ(1405)−mΛ

(51)

Numerically, we find

αΛ
d = 0.54× 10−4 fm3 (52)

for SET I and

αΛ
d = 1.08× 10−4 fm3 (53)

for SET II. As we see these values are much smaller than the seagull contributions

given in Table IV. Of course, it should be kept in mind that this is just an estimation of

the order of magnitude since a full calculation should include all possible intermediate

states. Although here we have discussed only the case of the Λ similar results are

expected for the other hyperons.

Appendix B

The elementary electric polarizabilities are given by:

γ
(e)
1 =

16

15
π e2

∫
dr r4 sin2 F

[
f2
π +

1

ε2

(
F ′2 +

sin2 F

r2

)]
, (54)

γ
(e)
2 = −

8

15
π e2

∫
dr r4 sin2 F

[
f2
π +

1

ε2

(
F ′2 +

sin2 F

r2

)]
, (55)

γ
(e)
3 =

1

15
e2
∫
dr r4

{
k2(1 + 4 cos2 F )

−
1

ε2f2
K

[
9

2
k2F ′2 sin2 F + 5k2 sin4 F

r2
−

5

4
k2

(
F ′2 + 2

sin2 F

r2

)

−2k′2 sin2 F − 2
k2

r2
sin2 F cos2 F

2
(1 + 3 cosF )

−3kk′F ′ sin 2F

] }
, (56)

γ
(e)
4 =

2

15
e2
∫
dr r4

{
k2 sin2 F

+
1

4ε2f2
K

[
9

2
k2F ′2 sin2 F + 5k2 sin4 F

r2
− 3kk′F ′ sin 2F

13



−2k′2 sin2 F − 2
k2

r2
sin2 F cos2 F

2
(1 + 3 cos F )

] }
, (57)

γ
(e)
5 = −

2

15
e2
∫
dr r4

{
k2(1− 4 cosF )

−
1

4ε2f2
K

[
16k2 cos2 F

2

sin2 F

r2
− k2

(
F ′2 + 2

sin2 F

r2

)
(1− 4 cosF )

+24kk′F ′ sinF

] }
, (58)

γ
(e)
6 = −

8

15
e2
∫
dr r4

{
k2 cos2 F

2

+
1

4ε2f2
K

[
k2 cos2 F

2

(
F ′2 + 4

sin2 F

r2

)
+ 3kk′F ′ sinF

] }
. (59)

For the magnetic polarizability3 we have:

γ
(m)
1 = −

2

5
π e2

∫
dr r4 sin2 F

[
f2
π +

1

ε2

(
F ′2 +

1

6

sin2 F

r2

)]
, (60)

γ
(m)
2 = −

2

15
π e2

∫
dr r4 sin2 F

[
f2
π +

1

ε2

(
F ′2 +

7

2

sin2 F

r2

)]
, (61)

γ
(m)
3 = −

1

30
e2
∫
dr r4

{
k2(2 + 3 cos2 F )

+
1

4ε2f2
K

[
5k2F ′2

(
1−

27

10
sin2 F

)
+ 6sin2 F (k′2− ω2k2)

+5k2 sin2 F

r2

(
1−

7

10
sin2 F

)
+ 9kk′F ′ sin 2F

+3
k2

r2
sin2 F cos2 F

2
(1 +

1

3
cosF )

] }
, (62)

γ
(m)
4 =

1

30
e2
∫
dr r4

{
k2 sin2 F

+
1

4ε2f2
K

[
9

2
k2 sin2 F

(
F ′2 +

29

9

sin2 F

r2

)
− 2 sin2 F (k′2 − ω2k2)

−3kk′F ′ sin 2F

−
k2

r2
sin2 F cos2 F

2
(1 + 27 cosF )

] }
, (63)

3Note that the expressions of γ
(m)
1 and γ

(m)
2 together with Eq.(32) do not lead to Eqs.(45-46)

of Ref.[25] which are in error. This affects only the corresponding expressions for the ∆ magnetic

polarizabilities. The correct numerical values are, however, very close to those quoted in such

reference.
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γ
(m)
5 =

1

15
e2
∫
dr r4

{
k2(2− 3 cosF )

−
1

2ε2f2
K

[
k2F ′2

(
3

2
cosF − 1

)
+
k2

r2
sin2 F

(
cosF −

3

2

)

+9kk′F ′ sinF

] }
, (64)

γ
(m)
6 = −

2

15
e2
∫
dr r4

{
k2 cos2 F

2

+
1

4ε2f2
K

[
k2 cos2 F

2

(
F ′2 + 14

sin2 F

r2

)
+ 3kk′F ′ sinF

] }
. (65)

γ
(e,m)
1 and γ

(e,m)
2 depend on the chiral angle only, while the remaining integrals take

into account the interplay between rotating soliton and bound kaon wavefunction.

Appendix C

For the sake of completeness we give in this Appendix the explicit expressions for the

elementary magnetic moment operators needed to calculate the dispersive contribu-

tion to the magnetic polarizability. The pure soliton contribution is given by:

µs,0 = −
2MN

3πΘ

∫
dr r2 sin2 F F ′ , (66)

µv,0 =
1

2
MNΘ . (67)

The part describing the interplay between soliton field and bound kaon reads

µs,1 = c µs,0 −
4

3
MN

∫
dr r2

{
k2 cos2 F

2

+
1

4ε2f2
K

[
4
k2

r2
sin2 F cos2 F

2
+ k2F ′2 cos2 F

2
+ 3kk′F ′ sinF

]}
, (68)

µv,1 =
MN

3

∫
dr r2

{
k2 cos2 F

2

(
1− 4 sin2 F

2

)
+

1

4ε2f2
K

[
4
k2

r2
sin2 F cos2 F

2

(
3− 8 sin2 F

2

)

+k2F ′2 cos2 F

2

(
1− 18 sin2 F

2

)
− 2k2ω2 sin2 F

+2k′2 sin2 F + 3kk′F ′ sinF
(
3− 4 sin2 F

2

)]}
+
NcMN

36

ω

f2
Kπ

2

∫
dr r2

(
k2 sin2 FF ′+ kk′ sin 2F

)
. (69)
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Set I Set II

γ
(e)
1 20.7 32.1

γ
(e)
2 -10.4 -16.0

γ
(e)
3 0.78 1.11

γ
(e)
4 0.19 0.34

γ
(e)
5 2.14 4.11

γ
(e)
6 -2.23 -3.83

Table I: The elementary electric polarizabilities (in 10−4fm3 ), as defined in

Appendix B, for Set I and Set II parameters.

Set I Set II

γ
(m)
1 -7.35 -11.1

γ
(m)
2 -3.00 -4.91

γ
(m)
3 -0.42 -0.62

γ
(m)
4 0.10 0.22

γ
(m)
5 -0.42 -0.93

γ
(m)
6 -0.72 -1.30

Table II: The elementary magnetic polarizabilities in 10−4fm3 (seagull

contribution).

Set I Set II

µs,0 0.37 0.74

µv,0 2.39 2.40

µs,1 -1.11 -1.07

µv,1 -0.10 -0.16

Table III: The elementary magnetic moments expressed in nuclear magnetons

(for more details, see Ref.[11]).
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Set I Set II

N 17.3 26.7

Λ 18.1 28.0

Σ0 18.1 28.0

Σ+ 18.8 29.4

Σ− 17.4 26.5

Ξ0 19.9 31.1

Ξ− 18.0 27.3

Table IV: Electric polarizabilities (in 10−4fm3 ) for the low lying octet hyperons.

Only the seagull contributions are here taken into account.

Set I Set II

βs βd βtot βs βd βtot

N -8.3 5.6 -2.7 -12.8 5.6 -7.2

Λ -8.7 12.1 3.4 -13.3 12.0 -1.3

Σ0 -8.7 -4.0 -12.7 -13.3 -4.0 -17.3

Σ+ -9.1 10.4 1.3 -14.0 10.1 -3.9

Σ− -8.4 0.48 -7.9 -12.6 0.12 -12.5

Ξ0 -9.6 14.0 4.4 -14.8 13.0 -1.8

Ξ− -8.7 1.5 -7.2 -13.0 0.59 -12.4

Table V: Magnetic polarizabilities (in 10−4fm3 ) of octet hyperons. In this case,

both seagull and dispersive parts contribute to the total polarizability.
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