294 research outputs found

    The Immediate Effects of Foam Rolling and Stretching on Iliotibial Band Stiffness:A Randomized Controlled Trial

    Get PDF
    BackgroundIliotibial Band Syndrome (ITBS) is a common clinical condition likely caused by abnormal compressive forces to the iliotibial band (ITB). Stretching interventions are common in ITBS treatment and may predominantly affect tensor fascia latae (TFL). Another ITBS treatment is foam rolling, which may more directly affect the ITB. Shear wave ultrasound elastography (SWUE) measures real-time soft tissue stiffness, allowing tissue changes to be measured and compared.PurposeTo examine effects of foam rolling and iliotibial complex stretching on ITB stiffness at 0 degrees and 10 degrees of hip adduction and hip adduction passive range of motion (PROM).Study DesignRandomized controlled trial.MethodsData from 11 males (age = 30.5 +/- 9.0 years, Body Mass Index (BMI) = 27.8 +/- 4.0) and 19 females (age = 23.5 +/- 4.9, BMI = 23.2 +/- 2.1) were analyzed for this study. Subjects were randomly assigned to one of three groups: control, stretching, and foam rolling. Shear wave ultrasound elastography measurements included ITB Young's modulus at the mid-thigh, the distal femur and the TFL muscle belly. ITB-to-femur depth was measured at mid-thigh level. Hip adduction PROM was measured from digital images taken during the movement.ResultsNo significant interactions or main effects were found for group or time differences in ITB Young's modulus at the three measured locations. The ITB stiffness at the mid-thigh and distal femur increased with 10 degrees adduction, but TFL stiffness did not increase. A main effect for adduction PROM was observed, where PROM increased 0.8 degrees post-treatment (p = 0.02).ConclusionA single episode of stretching and foam rolling does not affect short-term ITB stiffness. The lack of ITB stiffness changes may be from an inadequate intervention stimulus or indicate that the interventions have no impact on ITB stiffness.</p

    Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)

    Get PDF
    Organic carbon (OC) stored in Arctic permafrost represents one of Earth’s largest and most vulnerable terrestrial carbon pools. Amplified climate warming across the Arctic results in widespread permafrost thaw. Permafrost deposits exposed at river cliffs and coasts are particularly susceptible to thawing processes. Accelerating erosion of terrestrial permafrost along shorelines leads to increased transfer of organic matter (OM) to nearshore waters. However, the amount of terrestrial permafrost carbon and nitrogen as well as the OM quality in these deposits is still poorly quantified. We define the OM quality as the intrinsic potential for further transformation, decomposition and mineralisation. Here, we characterise the sources and the quality of OM supplied to the Lena River at a rapidly eroding permafrost river shoreline cliff in the eastern part of the delta (Sobo-Sise Island). Our multi-proxy approach captures bulk elemental, molecular geochemical and carbon isotopic analyses of Late Pleistocene Yedoma permafrost and Holocene cover deposits, discontinuously spanning the last ~52 kyr. We showed that the ancient permafrost exposed in the Sobo-Sise cliff has a high organic carbon content (mean of about 5 wt %). The oldest sediments stem from Marine Isotope Stage (MIS) 3 interstadial deposits (dated to 52 to 28 cal ka BP) and are overlaid by last glacial MIS 2 (dated to 28 to 15 cal ka BP) and Holocene MIS 1 (dated to 7–0 cal ka BP) deposits. The relatively high average chain length (ACL) index of n-alkanes along the cliff profile indicates a predominant contribution of vascular plants to the OM composition. The elevated ratio of iso and anteiso-branched fatty acids (FAs) relative to mid- and long-chain (C�20) n-FAs in the interstadial MIS 3 and the interglacial MIS 1 deposits suggests stronger microbial activity and consequently higher input of bacterial biomass during these climatically warmer periods. The overall high carbon preference index (CPI) and higher plant fatty acid (HPFA) values as well as high C=N ratios point to a good quality of the preserved OM and thus to a high potential of the OM for decomposition upon thaw. A decrease in HPFA values downwards along the profile probably indicates stronger OM decomposition in the oldest (MIS 3) deposits of the cliff. The characterisation of OM from eroding permafrost leads to a better assessment of the greenhouse gas potential of the OC released into river and nearshore waters in the future

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.

    Get PDF
    The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities

    Transmission reduction, health benefits, and upper-bound costs of interventions to improve retention on antiretroviral therapy: a combined analysis of three mathematical models

    Get PDF
    BACKGROUND: In this so-called treat-all era, antiretroviral therapy (ART) interruptions contribute to an increasing proportion of HIV infections and deaths. Many strategies to improve retention on ART cost more than standard of care. In this study, we aimed to estimate the upper-bound costs at which such interventions should be adopted. METHODS: In this combined analysis, we compared the infections averted, disability-adjusted life-years (DALYs) averted, and upper-bound costs of interventions that improve ART retention in three HIV models with diverse structures, assumptions, and baseline settings: EMOD in South Africa, Optima in Malawi, and Synthesis in sub-Saharan African low-income and middle-income countries (LMICs). We modelled estimates over a 40-year time horizon, from a baseline of Jan 1, 2022, when interventions would be implemented, to Jan 1, 2062. We varied increment of ART retention (25%, 50%, 75%, and 100% retention), the extent to which interventions could be targeted towards individuals at risk of interrupting ART, and cost-effectiveness thresholds in each setting. FINDINGS: Despite simulating different settings and epidemic trends, all three models produced consistent estimates of health benefit (ie, DALYs averted) and transmission reduction per increment in retention. The range of estimates was 1·35-3·55 DALYs and 0·12-0·20 infections averted over the 40-year time horizon per additional person-year retained on ART. Upper-bound costs varied by setting and intervention effectiveness. Improving retention by 25% among all people receiving ART, regardless of risk of ART interruption, gave an upper-bound cost per person-year of US26inOptima(Malawi),2-6 in Optima (Malawi), 43-68 in Synthesis (LMICs in sub-Saharan Africa), and 28180inEMOD(SouthAfrica).AmaximallytargetedandeffectiveretentioninterventionhadanupperboundcostperpersonyearofUS28-180 in EMOD (South Africa). A maximally targeted and effective retention intervention had an upper-bound cost per person-year of US93-223 in Optima (Malawi), 8711389inSynthesis(LMICsinsubSaharanAfrica),and871-1389 in Synthesis (LMICs in sub-Saharan Africa), and 1013-6518 in EMOD (South Africa). INTERPRETATION: Upper-bound costs that could improve ART retention vary across sub-Saharan African settings and are likely to be similar to or higher than was estimated before the start of the treat-all era. Upper-bound costs could be increased by targeting interventions to those most at risk of interrupting ART. FUNDING: Bill & Melinda Gates Foundation

    Photosensitized INA-Labelled protein 1 (PhIL1) is novel component of the inner membrane complex and is required for Plasmodium parasite development.

    Get PDF
    Plasmodium parasites, the causative agents of malaria, possess a distinctive membranous structure of flattened alveolar vesicles supported by a proteinaceous network, and referred to as the inner membrane complex (IMC). The IMC has a role in actomyosin-mediated motility and host cell invasion. Here, we examine the location, protein interactome and function of PhIL1, an IMC-associated protein on the motile and invasive stages of both human and rodent parasites. We show that PhIL1 is located in the IMC in all three invasive (merozoite, ookinete-, and sporozoite) stages of development, as well as in the male gametocyte and locates both at the apical and basal ends of ookinete and sporozoite stages. Proteins interacting with PhIL1 were identified, showing that PhIL1 was bound to only some proteins present in the glideosome motor complex (GAP50, GAPM1-3) of both P. falciparum and P. berghei. Analysis of PhIL1 function using gene targeting approaches indicated that the protein is required for both asexual and sexual stages of development. In conclusion, we show that PhIL1 is required for development of all zoite stages of Plasmodium and it is part of a novel protein complex with an overall composition overlapping with but different to that of the glideosome

    Standard values and relationship-specific validity of the Bielefeld Relationship Expectations Questionnaire (BFPE)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bielefeld Partnership Expectations Questionnaire (BFPE) is a tool to assess attachment in the romantic relationships of adults. The attachment styles are operationalized as configuration patterns of scale scores. While convergent validity has already been investigated, discriminant validity is still lacking confirmation.</p> <p>Methods</p> <p>The present sample (n = 1509) is representative for the German population aged 18 to 50. The mean age was 34.6 years. Most of the participants lived in a relationship (77.3 %). Discriminant validity was analyzed using a marital quality questionnaire (PFB), a social support questionnaire (F-Soz-U K-14), and a life satisfaction questionnaire (FLZ).</p> <p>Results</p> <p>All the BFPE scales have a satisfying internal consistency between r = .79 and .86. Those individuals who showed a secure pattern, i.e. increased "Readiness for Self-Disclosure" and "Conscious Need for Care" as well as reduced "Fear of Rejection" experienced their partner as socially supportive, reported higher marital quality in all of its facets, and were more satisfied within the life-domains "family/children" and "relationship/sexuality". Standard values for each scale are presented.</p> <p>Conclusions</p> <p>The BFPE has repeatedly been verified as a short, reliable, and valid instrument applicable to research practice with healthy individuals as well as within clinical contexts.</p

    Distribution patterns of tau pathology in progressive supranuclear palsy

    Get PDF
    Progressive supranuclear palsy (PSP) is a 4R-tauopathy predominated by subcortical pathology in neurons, astrocytes, and oligodendroglia associated with various clinical phenotypes. In the present international study, we addressed the question of whether or not sequential distribution patterns can be recognized for PSP pathology. We evaluated heat maps and distribution patterns of neuronal, astroglial, and oligodendroglial tau pathologies and their combinations in different clinical subtypes of PSP in postmortem brains. W

    Novel Rodent Models for Macular Research

    Get PDF
    BACKGROUND: Many disabling human retinal disorders involve the central retina, particularly the macula. However, the commonly used rodent models in research, mouse and rat, do not possess a macula. The purpose of this study was to identify small laboratory rodents with a significant central region as potential new models for macular research. METHODOLOGY/PRINCIPAL FINDINGS: Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli, laboratory rodents less commonly used in retinal research, were subjected to confocal scanning laser ophthalmoscopy (cSLO), fluorescein and indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT) using standard equipment (Heidelberg Engineering HRA1 and Spectralis™) adapted to small rodent eyes. The existence of a visual streak-like pattern was assessed on the basis of vascular topography, retinal thickness, and the topography of retinal ganglion cells and cone photoreceptors. All three species examined showed evidence of a significant horizontal streak-like specialization. cSLO angiography and retinal wholemounts revealed that superficial retinal blood vessels typically ramify and narrow into a sparse capillary net at the border of the respective area located dorsal to the optic nerve. Similar to the macular region, there was an absence of larger blood vessels in the streak region. Furthermore, the thickness of the photoreceptor layer and the population density of neurons in the ganglion cell layer were markedly increased in the visual streak region. CONCLUSIONS/SIGNIFICANCE: The retinal specializations of Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli resemble features of the primate macula. Hence, the rodents reported here may serve to study aspects of macular development and diseases like age-related macular degeneration and diabetic macular edema, and the preclinical assessment of therapeutic strategies

    Advancing an interdisciplinary framework to study seed dispersal ecology

    Get PDF
    Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity
    corecore