2,082 research outputs found

    On the MHD boundary of Kelvin-Helmholtz stability diagram at large wavelengths

    Get PDF
    Working within the domain of inviscid incompressible MHD theory, we found that a tangential discontinuity (TD) separating two uniform regions of different density, velocity and magnetic field may be Kelvin-Helmholtz (KH) stable and yet a study of a transition between the same constant regions given by a continuous velocity profile shows the presence of the instability with significant growth rates. Since the cause of the instability stems from the velocity gradient, and since a TD may be considered as the ultimate limit of such gradient, the statement comes as a surprise. In fact, a long wavelength (lambda) boundary for the KH instability does not exist in ordinary liquids being instead a consequence of the presence of magnetic shear, a possibility that has passed unnoticed in the literature. It is shown that KH modes of a magnetic field configuration with constant direction do not have the long lambda boundary. A theoretical explanation of this feature and examples of the violation of the TD stability condition are given using a model that can be solved in closed form. Stability diagrams in the (kd, MA) plane are given (where kd = 2pid/lambda, 2d is the velocity gradient length scale, and MA is the Alfvénic Mach number) that show both the well-known limit at small lambdas and the boundary for large but finite lambdas noted here. Consequences of this issue are relevant for stability studies of the dayside magnetopause as the stability condition for a TD should be used with care in data analysis work

    Velocity shear instability and plasma billows at the Earth\u27s magnetic boundary

    Get PDF
    The Kelvin-Helmoltz instability (KH) with formation of vortices appears in a wide variety of terrestrial, interplanetary, and astrophysical contexts. We study a series of iterated rolled-up coherent plasma structures (15) that flow in the equatorial Earth\u27s boundary layer (BL), observed on October 24, 2001. The data were recorded during a 1.5 hour-long Wind crossing of the BL at the dawn magnetospheric flank, tailward of the terminator (X≈−13 RE). The interplanetary magnetic field (IMF) was radially directed, almost antiparallel to the magnetosheath (MS) flow. This configuration is expected to be adverse to the KH instability because of the collinearity of field and flow, and the high compressibility of the MS. We analyze the BL stability with compressible MHD theory using continuous profiles for the physical quantities. Upstream, at near Earth sites, we input parameters derived from an exact MHD solution for collinear flows. Further downtail at Wind position we input measured parameters. The BL is found KH unstable in spite of unfavorable features of the external flow. On the experimental side, the passage of vortices is inferred from the presence of low density - hot plasma being accelerated to speeds higher than that of the contiguous MS. It is further supported by the peculiar correlation of relative motions (in the bulk velocity frame): cold-dense plasma drifts sunward, while hot-tenuous plasma moves tailward. This event differs from many other studies that reported BL vortices under strongly northward IMF orientations. This is a case of KH vortices observed under an almost radial IMF, with implicit significance for the more common Parker\u27s spiral fields, and the problem of plasma entry in the magnetosphere

    Coronal mass ejections as expanding force-free structures

    Full text link
    We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic structures and find the self-similar dynamics of configurations with spatially constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical geometries, expanding spheromaks and expanding Lundquist fields correspondingly. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, induced by inductive electric field. The structures depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured at a given moment, and thus are applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, the flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic

    TDR-based water content estimation on globigerina limestone through permittivity measurements

    Get PDF
    Most monuments and historical buildings in the Maltese Islands are made of the local Globigerina Limestone (GL). This type of stone, however, is very delicate and prone to degradation caused by the environmental conditions of the islands. Hence, for the preservation of the Cultural Heritage monuments, it is necessary to promptly assess the health status of these structures and, in particular, their water content (which represents one of the major causes of degradation). Starting from these considerations, in this work, a time domain reflectometry (TDR)-based method for estimating water content of GL is presented. More specifically, the proposed method relies on estimating the water content value of the GL structure from TDR-based dielectric permittivity measurements. To verify the suitability of this system, experimental tests were carried out on a GL sample. The results anticipate the strong potential of the proposed method for practical applications in the Cultural Heritage diagnostics

    tert-Butyl 2-methyl-2-(4-methyl­benzo­yl)propanoate

    Get PDF
    The title compound, C16H22O3, is bent with a dihedral angle of 75.3 (1)° between the mean planes of the benzene ring and a group encompassing the ester functionality (O=C—O—C). In the crystal, the mol­ecules are linked into infinite chains held together by weak C—H⋯O hydrogen-bonded inter­actions between an H atom on the benzene ring of one mol­ecule and an O atom on the ketone functionality of an adjacent mol­ecule. The chains are arranged with neighbouring tert-butyl and dimethyl groups on adjacent chains exhibiting hydro­phobic stacking, with short C—H⋯H—C contacts (2.37 Å) between adjacent chain

    N-[Morpholino(phen­yl)meth­yl]benzamide

    Get PDF
    The title compound, C18H20N2O2, crystallizes with two mol­ecules in the asymmetric unit. The morpholine rings of both mol­ecules adopt chair conformations. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds. One phenyl ring is disordered over two orientations in a 0.665 (5):0.335 (5) ratio

    Changes in the gastric enteric nervous system and muscle: A case report on two patients with diabetic gastroparesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular components. The aim of this study was to use modern analytical methods to determine morphological and molecular changes in the gastric wall in patients with diabetic gastroparesis.</p> <p>Methods</p> <p>Full thickness gastric biopsies were obtained laparoscopically from two gastroparetic patients undergoing surgical intervention and from disease-free areas of control subjects undergoing other forms of gastric surgery. Samples were processed for histological and immunohistochemical examination.</p> <p>Results</p> <p>Although both patients had severe refractory symptoms with malnutrition, requiring the placement of a gastric stimulator, one of them had no significant abnormalities as compared with controls. This patient had an abrupt onset of symptoms with a relatively short duration of diabetes that was well controlled. By contrast, the other patient had long standing brittle and poorly controlled diabetes with numerous episodes of diabetic ketoacidosis and frequent hypoglycemic episodes. Histological examination in this patient revealed increased fibrosis in the muscle layers as well as significantly fewer nerve fibers and myenteric neurons as assessed by PGP9.5 staining. Further, significant reduction was seen in staining for neuronal nitric oxide synthase, heme oxygenase-2, tyrosine hydroxylase as well as for c-KIT.</p> <p>Conclusion</p> <p>We conclude that poor metabolic control is associated with significant pathological changes in the gastric wall that affect all major components including muscle, neurons and ICC. Severe symptoms can occur in the absence of these changes, however and may reflect vagal, central or hormonal influences. Gastroparesis is therefore likely to be a heterogeneous disorder. Careful molecular and pathological analysis may allow more precise phenotypic differentiation and shed insight into the underlying mechanisms as well as identify novel therapeutic targets.</p

    Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)iron(II) bis­(dicyanamidate) 4.5-hydrate

    Get PDF
    In the title compound, [Fe(C24H16N6)2][N(CN)2]2·4.5H2O, the central iron(II) ion is hexa­coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz) ligands. Two dicyanamide anions [dca or N(CN)2 −] act as counter-ions, and 4.5 water mol­ecules act as solvation agents. The structure contains isolated cationic iron(II)–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water mol­ecule are disordered with an occupancy ratio of 0.614 (8):0.386 (8). O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds involving dca, water and tppz mol­ecules are observed
    corecore