20,122 research outputs found

    Comment on ''Field-Enhanced Diamagnetism in the Pseudogap State of the Cuprate Bi2Sr2CaCu2O8+\delta Superconductor in an Intense Magnetic Field''

    Full text link
    In the above mentioned letter by Wang et al. [Phys. Rev. Lett, 95, 247002 (2005)], magnetization measurements on two Bi_2Sr_2caCu_2O_8+delta samples are reported. They claim that these experimental results support the vortex scenario for the loss of phase coherence at Tc. On the contrary, we show in this comment that they can be explained by means of the Ginzburg Landau theory (under a total-enery cutoff) for the superconducting fluctuations above Tc.Comment: Final versio

    Edge and waveguide THz surface plasmon modes in graphene micro-ribbons

    Get PDF
    Surface plasmon modes supported by graphene ribbon waveguides are studied and classified. The properties of both modes with the field concentration within the ribbon area (waveguiding modes) and on the edges (edge modes) are discussed. The waveguide and edge modes are shown to be separated from each other by a gap in wavenumbers. The even-parity hybridized edge mode results to be the fundamental electromagnetic mode of the ribbon, possessing also the lowest losses. All the plasmonic modes in the ribbons have an optimum frequency, at which the absorption losses are minimum, due to competition between the plasmon confinement and the frequency dependence of absorption in graphene.Comment: 4 pages, 4 figure

    Wavelength de-multiplexing properties of a single aperture flanked by periodic arrays of indentations

    Full text link
    In this paper we explore the transmission properties of single subwavelength apertures perforated in thin metallic films flanked by asymmetric configurations of periodic arrays of indentations. It is shown how the corrugation in the input side can be used to transmit selectively only two different wavelengths. Also, by tuning the geometrical parameters defining the corrugation of the output side, these two chosen wavelengths can emerge from the structure as two very narrow beams propagating at well-defined directions. This new ability of structured metals can be used as a base to build micron-sized wavelength de-multiplexers.Comment: Accepted for publication in Photonics and Nanostructure

    Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces

    Full text link
    In this work, the scattering of surface plasmons by a finite periodic array of one-dimensional grooves is theoretically analyzed by means of a modal expansion technique. We have found that the geometrical parameters of the array can be properly tuned to achieve optimal performance of the structure either as a Bragg reflector or as a converter of surface plasmons into light. In this last case, the emitted light is collimated within a few degrees cone. Importantly, we also show that a small number of indentations in the array are sufficient to fully achieve its functional capabilities.Comment: 5 pages, 5 figures; changed sign convention in some definition

    Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Get PDF
    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.Comment: 19 pages, 13 figure

    Terahertz surface plasmon polariton propagation and focusing on periodically corrugated metal wires

    Get PDF
    In this letter we show how the dispersion relation of surface plasmon polaritons (SPPs) propagating along a perfectly conducting wire can be tailored by corrugating its surface with a periodic array of radial grooves. In this way, highly localized SPPs can be sustained in the terahertz region of the electromagnetic spectrum. Importantly, the propagation characteristics of these spoof SPPs can be controlled by the surface geometry, opening the way to important applications such as energy concentration on cylindrical wires and superfocusing using conical structures.Comment: accepted at PRL, submitted 29th May 200

    Quantum mechanical analysis of the elastic propagation of electrons in the Au/Si system: application to Ballistic Electron Emission Microscopy

    Get PDF
    We present a Green's function approach based on a LCAO scheme to compute the elastic propagation of electrons injected from a STM tip into a metallic film. The obtained 2D current distribution in real and reciprocal space furnish a good representation of the elastic component of Ballistic Electron Emission Microscopy (BEEM) currents. Since this component accurately approximates the total current in the near threshold region, this procedure allows --in contrast to prior analyses-- to take into account effects of the metal band structure in the modeling of these experiments. The Au band structure, and in particular its gaps appearing in the [111] and [100] directions provides a good explanation for the previously irreconcilable results of nanometric resolution and similarity of BEEM spectra on both Au/Si(111) and Au/Si(100).Comment: 12 pages, 9 postscript figures, revte
    • …
    corecore