636 research outputs found

    Seismic cycles, size of the largest events, and the avalanche size distribution in a model of seismicity

    Get PDF
    We address several questions on the behavior of a numerical model recently introduced to study seismic phenomena, that includes relaxation in the plates as a key ingredient. We make an analysis of the scaling of the largest events with system size, and show that when parameters are appropriately interpreted, the typical size of the largest events scale as the system size, without the necessity to tune any parameter. Secondly, we show that the temporal activity in the model is inherently non-stationary, and obtain from here justification and support for the concept of a "seismic cycle" in the temporal evolution of seismic activity. Finally, we ask for the reasons that make the model display a realistic value of the decaying exponent bb in the Gutenberg-Richter law for the avalanche size distribution. We explain why relaxation induces a systematic increase of bb from its value b0.4b\simeq 0.4 observed in the absence of relaxation. However, we have not been able to justify the actual robustness of the model in displaying a consistent bb value around the experimentally observed value b1b\simeq 1.Comment: 11 pages, 10 figure

    Non-linear effects on Turing patterns: time oscillations and chaos.

    Get PDF
    We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space, produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, Turing patterns oscillate in time, a phenomenon which is expected to occur only in a three morphogen system. When varying a single parameter, a series of bifurcations lead to period doubling, quasi-periodic and chaotic oscillations without modifying the underlying Turing pattern. A Ruelle-Takens-Newhouse route to chaos is identified. We also examined the Turing conditions for obtaining a diffusion driven instability and discovered that the patterns obtained are not necessarily stationary for certain values of the diffusion coefficients. All this results demonstrates the limitations of the linear analysis for reaction-diffusion systems

    Turing patterns resulting from a Sturm-Liouville problem

    Full text link
    Pattern formation in reaction-diffusion systems where the diffusion terms correspond to a Sturm-Liouville problem are studied. These correspond to a problem where the diffusion coefficient depends on the spatial variable: (D(x)u)\nabla \cdot \left( \mathcal{D} ( {\mathbf x} ) \nabla {\mathbf u} \right). We found that the conditions for Turing instability are the same as in the case of homogeneous diffusion but the nonlinear analysis must be generalized to consider general orthogonal eigenfunctions instead of the standard Fourier approach. The particular case D(x)=1x2\mathcal{D} (x)= 1-x^2, where solutions are linear combinations of Legendre polynomials, is studied in detail. From the developed general nonlinear analysis, conditions for producing stripes and spots are obtained, which are numerically verified using the Schaneknberg system. Unlike to the case with homogeneous diffusion, and due to the properties of the Legendre polynomials, stripped and spotted patterns with variable wavelength are produced, and a change from stripes to spots is predicted when the wavelength increases. The patterns obtained can model biological systems where stripes or spots accumulate close to the boundaries and the theory developed here can be applied to study Turing patterns associated to other eigenfunctions related with Sturm-Liouville problems.Comment: 15 pages, 4 figure

    Ram pressure and dusty red galaxies - key factors in the evolution of the multiple cluster system Abell 901/902

    Full text link
    We present spectroscopic observations of 182 disk galaxies (96 in the cluster and 86 in the field environment) in the region of the Abell 901/902 multiple cluster system, which is located at a redshift of z0.165z\sim 0.165. The presence of substructures and non-Gaussian redshift distributions indicate that the cluster system is dynamically young and not in a virialized state. We find evidence for two important galaxy populations. \textit{Morphologically distorted galaxies} are probably subject to increased tidal interactions. They show pronounced rotation curve asymmetries at intermediate cluster-centric radii and low rest-frame peculiar velocities. \textit{Morphologically undistorted galaxies} show the strongest rotation curve asymmetries at high rest-frame velocities and low cluster-centric radii. Supposedly, this group is strongly affected by ram-pressure stripping due to interaction with the intra-cluster medium. Among the morphologically undistorted galaxies, dusty red galaxies have particularly strong rotation curve asymmetries, suggesting ram pressure is an important factor in these galaxies. Furthermore, dusty red galaxies on average have a bulge-to-total ratio higher by a factor of two than cluster blue cloud and field galaxies. The fraction of kinematically distorted galaxies is 75% higher in the cluster than in the field environment. This difference mainly stems from morphological undistorted galaxies, indicating a cluster-specific interaction process that only affects the gas kinematics but not the stellar morphology. Also the ratio between gas and stellar scale length is reduced for cluster galaxies compared to the field sample. Both findings could be best explained by ram-pressure effects.Comment: Electronic version published in Astronomy and Astrophysics Volume 549, Page 0; 19 pages, 21 figure

    Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change

    Get PDF
    Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year

    Tully-Fisher analysis of the multiple cluster system Abell 901/902

    Full text link
    We derive rotation curves from optical emission lines of 182 disk galaxies (96 in the cluster and 86 in the field) in the region of Abell 901/902 located at z0.165z\sim 0.165. We focus on the analysis of B-band and stellar-mass Tully-Fisher relations. We examine possible environmental dependencies and differences between normal spirals and "dusty red" galaxies, i.e. disk galaxies that have red colors due to relatively low star formation rates. We find no significant differences between the best-fit TF slope of cluster and field galaxies. At fixed slope, the field population with high-quality rotation curves (57 objects) is brighter by \Delta M_{B}=-0\fm42\pm0\fm15 than the cluster population (55 objects). We show that this slight difference is at least in part an environmental effect. The scatter of the cluster TFR increases for galaxies closer to the core region, also indicating an environmental effect. Interestingly, dusty red galaxies become fainter towards the core at given rotation velocity (i.e. total mass). This indicates that the star formation in these galaxies is in the process of being quenched. The luminosities of normal spiral galaxies are slightly higher at fixed rotation velocity for smaller cluster-centric radii. Probably these galaxies are gas-rich (compared to the dusty red population) and the onset of ram-pressure stripping increases their star-formation rates. The results from the TF analysis are consistent with and complement our previous findings. Dusty red galaxies might be an intermediate stage in the transformation of infalling field spiral galaxies into cluster S0s, and this might explain the well-known increase of the S0 fraction in galaxy clusters with cosmic time.Comment: Accepted for publication in Astronomy and Astrophysics; 16 pages, 14 figure

    The dynamics of cultivation and floods in arable lands of Central Argentina

    Get PDF
    Although floods in watersheds have been associated with land-use change since ancient times, the dynamics of flooding is still incompletely understood. In this paper we explored the relations between rainfall, groundwater level, and cultivation to explain the dynamics of floods in the extremely flat and valuable arable lands of the Quinto river watershed, in central Argentina. The analysis involved an area of 12.4 million hectare during a 26-year period (1978–2003), which comprised two extensive flooding episodes in 1983–1988 and 1996–2003. Supported by information from surveys as well as field and remote sensing measurements, we explored the correlation among precipitation, groundwater levels, flooded area and land use. Flood extension was associated to the dynamics of groundwater level. While no correlation with rainfall was recorded in lowlands, a significant correlation (<i>P</i><0.01) between groundwater and rainfall in highlands was found when estimations comprise a time lag of one year. Correlations between groundwater level and flood extension were positive in all cases, but while highly significant relations (<i>P</i><0.01) were found in highlands, non significant relations (<i>P</i>>0.05) predominate in lowlands. Our analysis supports the existence of a cyclic mechanism driven by the reciprocal influence between cultivation and groundwater in highlands. This cycle would involve the following stages: (a) cultivation boosts the elevation of groundwater levels through decreased evapotranspiration; (b) as groundwater level rises, floods spread causing a decline of land cultivation; (c) flooding propitiates higher evapotranspiration favouring its own retraction; (d) cultivation expands again following the retreat of floods. Thus, cultivation would trigger a destabilizing feedback self affecting future cultivation in the highlands. It is unlikely that such sequence can work in lowlands. The results suggest that rather than responding directly and solely to the same mechanism, floods in lowlands may be the combined result of various factors like local rainfall, groundwater level fluctuations, surface and subsurface lateral flow, and water-body interlinking. Although the hypothetical mechanisms proposed here require additional understanding efforts, they suggest a promising avenue of environmental management in which cultivation could be steered in the region to smooth the undesirable impacts of floods

    Production, characterization and testing of antibacterial PVA membranes loaded with HA-Ag3PO4 nanoparticles, produced by SC-CO2 phase inversion

    Get PDF
    BACKGROUND: Silver-loaded hydroxyapatite nanoparticles were incorporated into poly(vinyl alcohol) (PVA) membranes obtained by supercritical CO2 (SC-CO2) assisted phase inversion. Ag3PO4 crystals of 2.2 ± 0.6 nm were dispersed in synthesized needle-like hydroxyapatite nanoparticles (20 × 65 nm) and were uniformly deposited on the internal surfaces of the PVA membranes. Operative conditions to produce membranes by SC-CO2, PVA concentration and the effect on membrane porosity and morphology were studied. RESULTS: Solutions at 20% w/w PVA produced membranes with cellular morphology and nanoporous walls, whereas 30% and 50% w/w solutions produced nanostructured membranes. Silver ions were released from PVA membranes mainly by diffusion according to the Peppas–Sahlin model. Membranes obtained at 20% w/w PVA showed a significant E. coli inhibition at an Ag concentration of 9 ppm, reaching the minimal inhibitory concentration (MIC) and improving the bactericidal activity of the nanoparticles. CONCLUSION: A concentration of Ag3PO4 crystals of about 22 ppm was calculated as being capable of completely destroying these bacteria, reaching the minimum bactericidal concentration (MBC)

    On the Nature of the EIS Candidate Clusters: Confirmation of z<0.6 candidates

    Get PDF
    We use public V-band imaging data from the wide-angle surveys conducted by the ESO Imaging Survey project (EIS) to further investigate the nature of the EIS galaxy cluster candidates. These were originally identified by applying a matched-filter algorithm which used positional and photometric data of the galaxy sample extracted from the I-band survey images. In this paper, we apply the same technique to the galaxy sample extracted from V-band data and compare the new cluster detections with the original ones. We find that ~75% of the low-redshift cluster candidates (z<0.6) are detected in both passbands and their estimated redshifts show good agreement with the scatter in the redshift differences being consistent with the estimated errors of the method. For the ``robust'' I-band detections the matching frequency approaches ~85%. We also use the available (V-I) color to search for the red sequence of early-type galaxies observed in rich clusters over a broad range of redshifts. This is done by searching for a simultaneous overdensity in the three-dimensional color-projected distance space. We find significant overdensities for ~75% of the ``robust'' candidates with z_I<0.6. We find good agreement between the characteristic color associated to the detected "red sequence" and that predicted by passive evolution galaxy models for ellipticals at the redshift estimated by the matched-filter. The results presented in this paper show the usefulness of color data, even of two-band data, to both tentatively confirm cluster candidates and to select possible cluster members for spectroscopic observations. Based on the present results, we estimate that ~150 EIS clusters with z_I<0.6 are real, making it one of the largest samples of galaxy clusters in this redshift range currently available in the southern hemisphere.Comment: 11 pages, 10 figures, accepted for publication in A&

    The cosmic web for density perturbations of various scales

    Full text link
    We follow the evolution of galaxy systems in numerical simulation. Our goal is to understand the role of density perturbations of various scales in the formation and evolution of the cosmic web. We perform numerical simulations with the full power spectrum of perturbations, and with spectrum cut at long wavelengths. Additionally, we have one model, where we cut the intermediate waves. We analyze the density field and study the void sizes and density field clusters in different models. Our analysis shows that the fine structure (groups and clusters of galaxies) is created by small-scale density perturbations of scale 8\leq 8 \Mpc. Filaments of galaxies and clusters are created by perturbations of intermediate scale from 8\sim 8 to 32\sim 32 \Mpc, superclusters of galaxies by larger perturbations. We conclude that the scale of the pattern of the cosmic web is determined by density perturbations of scale up to 100\sim 100 \Mpc. Larger perturbations do not change the pattern of the web, but modulate the richness of galaxy systems, and make voids emptier. The stop of the increase of the scale of the pattern of the cosmic web with increasing scale of density perturbations can probably be explained as the freezing of the web at redshift z0.7z\simeq 0.7.Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysic
    corecore