392 research outputs found

    Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure:A pooled analysis of 3 clinical trials

    Get PDF
    BackgroundRehospitalization is a major cause for heart failure (HF)–related morbidity and is associated with considerable loss of quality of life and costs. The rate of unplanned rehospitalization in patients with HF is unacceptably high; current risk stratification to identify patients at risk for rehospitalization is inadequate. We evaluated whether measurement of galectin-3 would be helpful in identifying patients at such risk.MethodsWe analyzed pooled data from patients (n = 902) enrolled in 3 cohorts (COACH, n = 592; PRIDE, n = 181; and UMD H-23258, n = 129) originally admitted because of HF. Mean patient age was between 61.6 and 72.9 years across the cohorts, with a wide range of left ventricular ejection fraction. Galectin-3 levels were measured during index admission. We used fixed and random-effects models, as well as continuous and categorical reclassification statistics to assess the association of baseline galectin-3 levels with risk of postdischarge rehospitalization at different time points and the composite end point all-cause mortality and rehospitalization.ResultsCompared with patients with galectin-3 concentrations less than 17.8 ng/mL, those with results exceeding this value were significantly more likely to be rehospitalized for HF at 30, 60, 90, and 120 days after discharge, with odds ratios (ORs) of 2.80 (95% CI 1.41-5.57), 2.61 (95% CI 1.46-4.65), 3.01 (95% CI 1.79-5.05), and 2.79 (95% CI 1.75-4.45), respectively. After adjustment for age, gender, New York Heart Association class, renal function (estimated glomerular filtration rate), left ventricular ejection fraction, and B-type natriuretic peptide, galectin-3 remained an independent predictor of HF rehospitalization. The addition of galectin-3 to risk models significantly reclassified patient risk of postdischarge rehospitalization and fatal event at each time point (continuous net reclassification improvement at 30 days of +42.6% [95% CI +19.9%-65.4%], P < .001).ConclusionsAmong patients hospitalized for HF, plasma galectin-3 concentration is useful for the prediction of near-term rehospitalization

    miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation

    ESDN inhibits melanoma progression by blocking E-selectin expression in endothelial cells via STAT3

    Get PDF
    An interactive crosstalk between tumor and stroma cells is essential for metastatic melanoma progression. We evidenced that ESDN/DCBLD2/CLCP1 plays a crucial role in endothelial cells during the spread of melanoma. Precisely, increased extravasation and metastasis formation were revealed in ESDN-null mice injected with melanoma cells, even if the primary tumor growth, vessel permeability, and angiogenesis were not enhanced. Interestingly, improved adhesion of melanoma cells to ESDN-depleted endothelial cells was observed, due to the presence of higher levels of E-selectin transcripts/proteins in ESDN-defective cells. In accordance with these results, anticorrelation was observed between ESDN and E-selectin in human endothelial cells. Most importantly, our data revealed that cimetidine, an E-selectin inhibitor, was able to block cell adhesion, extravasation, and metastasis formation in ESDN-null mice, underlying a major role of ESDN in E-selectin transcription upregulation, which according to our data, may presumably be linked to STAT3. Based on our results, we propose a protective role for ESDN during the spread of melanoma and reveal its therapeutic potential
    corecore